高等数学一
高数是个纸老虎,一点难度都没有。
上来先学集合、极限等等定义,给高中数学再夯实一下基础(听说现在高中都学导数了,这部分估计也挪高中里讲了)
引入了无穷的概念,尤其是无穷小,后面好拿无穷小说导数。
然后讲怎么求导,就是一堆公式,背熟了以后学怎么灵活运用。
我记得我学的顺序是学完了求导学三大中值定理,当时看着不太懂,后来学复变函数时老师说了句:“所谓中值就是平均数……”当时脑袋里轰的一下就明白了,原来高数就是拿专业词汇吓唬人。中值定理完了之后是个泰勒公式,对他我只能说不会用的时候看着发愁,但是一但用熟了你会觉得离不开他的,不过泰勒展开说不重要也不算很重要,至少我没见过哪道题目是非用这东西做不可的。
然后是积分学,基本就是导数的逆运算,背那些公式反过来用。分为定积分和不定积分,然后会学到积分的几何意义,你会发现很多乱七八糟的面积、体积甚至是一些公式都可以用这个东西自己推导出来,很有趣的。最后再学一些积分在物理上的应用,很多老师不讲,我是自己看的。
我到这里高数一就学完了,高数二是个全新的领域,不过考虑到现在高中生都在高中学导数,可能高数一的内容会很提前讲完,不知道他们学完积分以后,后面讲些什么。
❷ 高等数学在考研数学一的所占的比例是多少
高等数学在考研数学一占百分之五十六。
考研报不报班,主要看你自己的情况,是否可以通过视频资料等自己解决难题,是否可以有自制力自主学习。
仅就高数来说,陈文登讲的最好,毫无疑问;张宇的解题方法很值得一看,尤其是泰勒公式那一部分;李永乐主要讲线代,全书的高数部分是李正元所编,李正元讲的很全,但与陈文登相比系统性不够,方法也大多常规。
如果有时间的话这几个老师的课你都可以先听一听,看更合适谁的风格。
(2)高等数学一扩展阅读:
试卷结构
选择题:8题(每题4分);
填空题:6题(每题4分);
解答题:9题(每题10分左右);
满分150分,考试时间3小时。
2. 考试科目及分值
高等数学:84分,占56%(4道选择题,4道填空题,5道大题);
线性代数:33分,占22%(2道选择题,1道填空题,2道大题);
概率论与数理统计:33分,占22%(2道选择题,1道填空题,2道大题)。
注意:数学二不考概率论与数理统计,这一科的分值和试题全加到高等数学中。
3. 考试特点
①总分150分,在公共课中所占分值大,全国平均分在70左右,分数之间差距较大;
②注重基础,遵循考试大纲出题,考查公式定理,知识点固定;
③注重高质量的考点训练与题型总结。
参考链接:网络考研数学
❸ 自考中的高数(一)指什么
主要指微积分,线性代数,概率论和统计初步。
高数一历年来都是通过率较低的一门学科,因为学习者必须认真去自学才能通过考试,想蒙混过关是很困难的。
高数一出题方式千变万化,根本无法进行估题,并且由于各章节相互联系,所以没办法区分重点和非重点。
建议有条件的学习者可以参加一些培训班或找一位高数学得好的朋友,这样就可以在遇到难题时及时得到解决,同时也可以学到各种解题方法。
(3)高等数学一扩展阅读
数学中的无穷以潜无穷和实无穷两种形式出现。
在极限过程中,变量的变化是无止境的,属于潜无穷的形式。而极限值的存在又反映了实无穷过程。最基本的极限过程是数列和函数的极限。
数学分析以它为基础,建立了刻画函数局部和总体特征的各种概念和有关理论,初步成功地描述了现实世界中的非均匀变化和运动。
数学的计算性方面。在初等数学中甚至占了主导的地位。它在高等数学中的地位也是明显的,高等数学除了有很多理论性很强的学科之外,也有一大批计算性很强的学科,如微分方程、计算数学、统计学等。在高度抽象的理论装备下,这些学科才有可能处理现代科学技术中的复杂计算问题。
❹ 高等数学指的是哪几门课程
《高等数学》是根据国家教育部非数学专业数学基础课教学指导分委员会制定的工科类本科数学基础课程教学基本要求编写的。内容包括: 函数与极限,一元函数微积分,向量代数与空间解析几何,多元函数微积分,级数,常微分方程等,书末附有几种常用平面曲线及其方程、积分表、场论初步等三个附录以及习题参考答案。本书对基本概念的叙述清晰准确,对基本理论的论述简明易懂,例题习题的选配典型多样,强调基本运算能力的培养及理论的实际应用·本书可用作高等学校工科类本科生和电大、职大的高等数学课程的教材,也可供教师作为教学参考书及自学高等数学课程者使用。
❺ 高等数学(一)有哪些内容
考研数学1吗
高等数学部分:一元微分学,一元积分学,空间解析几何,多元微积分(二,三元为主),无穷级数,简单微分方程求解(包括分离变量方程,一阶线性方程,高阶常系数方程,可降解方程),线性代数,概率论与数理统计。
如果只是高等数学上册这本书的话,那么就是以一元微分学,一元积分学为主。
❻ 高数一与高数二区别
1、难易程度不同
因为高数一比高数二的内容更多,考试内容也更多,所以高数二较高数一简单。
2、学习内容不同
《高数一》主要学数学分析,内容主要为微积分(含多元微分、重积分及常微分方程)和无穷级数等。)
《高数二》主要学概率统计、线性代数等内容。
3、知识的掌握程度要求不同
《高数》(一)要求掌握求反函数的导数,掌握求由参数方程所确定的函数的求导方法,会求简单函数的n阶导数,要掌握三角换元、正弦变换、正切变换和正割变换。
《高数》(二)只要求掌握正弦变换、正切变换等。
4、适用对象不同
理工类专业,如物理、化学、自动化等,考高等数学(一)
经管类专业,如政治、英语、工商管理等,考高等数学(二)
(6)高等数学一扩展阅读:
专升本科目:
各科类统考科目为政治、英语和一门专业基础课。
1、文史类:政治、英语、大学语文。
2、艺术类:政治、英语、艺术概论。
3、理工类:政治、英语、高等数学(一)。
4、经济管理类:政治、英语、高等数学(二)。
5、法学类:政治、英语、民法。
6、教育学类:政治、英语、教育理论。
7、农学类:政治、英语、生态学基础。
8、医学类:政治、英语、医学综合。
9、体育类:政治、英语、教育理论。
10、中医药类:政治、英语、大学语文。
❼ 成人高考高数高数(一)和高数(二)有什么区别啊
1、内容不同
高数一主要学微积分、函数、极限,各个内容之间相互联系,层层递进需要扎实的基本功。高数二主要学概率论、线性代数等学习内容相对简单。
2、学习方法不同
由于高数一各章是相互关联、层层推进的,每一章都是后一章的基础,所以学习时一定要按部就班,只有将一章真正搞懂了才可进入下一章学习,学习过程中不能贪图快速学完。高数二不需要太多的基础知识,只是概率里有一点积分和导数的简单计算,高数二内容连贯性不是很强。
3、专业要求不同:
考高数一的专业:
其中工学类中的力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、计算机科学与技术、土木工程、水利工程;
测绘科学与技术、交通运输工程、船舶与海洋科学与技术、兵器科学与技术、核科学与技术、生物医学工程等20个一级学科中所有的二级学科和专业,以及授予工学学位的管理科学与工程的一级学科均要求使用数学一考试试卷。
考高数二的专业:
高数二是经济类、管理类的必考科目,工学类中的纺织科学与工程、轻工技术与工程、农业工程、林业工程、食品科学与工程等5个一级学科中的二级学科和专业均要求使用是高数二考试试卷。
(7)高等数学一扩展阅读:
成人高考报考对象:
一、符合下列条件的中国公民可以报名:
1.遵守中华人民共和国宪法和法律。
2.国家承认学历的各类高、中等学校在校生以外的在职、从业人员和社会其他人员。
3.身体健康,生活能自理,不影响所报专业学习。
4.报考高中起点升本科或高中起点升专科的考生应具有高中文化程度。报考专科起点升本科的考生必须是已取得经教育部审定核准的国民教育系列高等学校、高等教育自学考试机构颁发的专科毕业证书、本科肄业证书或以上证书的人员。
5.报考成人高校医学门类专业的考生应具备以下条件:
⑴报考临床医学、口腔医学、预防医学、中医学等临床类专业的人员,应当取得省级卫生行政部门颁发的相应类别的执业助理医师及以上资格证书或取得国家认可的普通中专相应专业学历;或者县级及以上卫生行政部门颁发的乡村医生执业证书并具有中专学历或中专水平证书。
⑵报考护理学专业的人员应当取得省级卫生行政部门颁发的执业护士证书。
⑶报考医学门类其他专业的人员应当是从事卫生、医药行业工作的在职专业技术人员。
⑷考生报考的专业原则上应与所从事的专业对口。
❽ 高等数学(一)有哪些
包括:极限、导数、微分、不定积分、定积分、微分方程
❾ 高等数学A高等数学B有什么区别区别是什么
总体上说A与B的区别就是:
4.高等数学(A类)是理工科本科各专业学生的一门公共必修的重要基础理论课,它是为培养我国社会主义现代化建设所需要的高质量专门人才服务的。高等数学(B类)是生物,化学相关本科专业学生的一门公共必修的重要基础理论课,它是为培养我国社会主义现代化建设所需要的高质量专门人才服务的。
5.高等数学A(学时数160),力学、物理等理论要求较高的理工科专业。高等数学B(学时数136),生物等大部分的工科专业。
(9)高等数学一扩展阅读:
什么是高等数学
广义地说,初等数学之外的数学都是高等数学,也有将中学较深入的代数、几何以及简单的集合论初步、逻辑初步称为中等数学的,将其作为中小学阶段的初等数学与大学阶段的高等数学的过渡。
通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。
主要内容包括:极限、微积分、空间解析几何与线性代数、级数、常微分方程。工科、理科研究生考试的基础科目。
参考资料:网络-高等数学
❿ 高数一是什么啊
高等数学
第一章:函数、极限、连续
考试内容:函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立
数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小和无穷大的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:
函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质 考试要求:
1.理解函数的概念,掌握函数的表示法,并会建立应用问题中的函数关系.
2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.
5.理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系. 6.掌握极限的性质及四则运算法则.
7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.
第二章:一元函数微分学
考试内容:导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L’Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数最大值和最小值 弧微分 曲率的概念 曲率圆 曲率半径
考试要求:
1. 理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.
2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.
3.了解高阶导数的概念,会求简单函数的高阶导数.
4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.
5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.
6.掌握用洛必达法则求未定式极限的方法.
7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用.
8.会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数f(x)具有二阶导数。当时,f(x)的图形是凹的;当f``(x)<0时,f(x)的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.
9.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.
第三章:一元函数积分学
考试内容:原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 用定积分表达和计算质心 积分上限的函数及其导数 牛顿一莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 广义反常(广义)积分 定积分的应用
7.了解曲面方程和空间曲线方程的概念.
8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面方程.
9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.
第五章:多元函数微分学
考试内容:
常数项级数的收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与p级数及其收敛性 正项级数收敛性的判别法 交错级数与莱布尼茨定理 任意项级数的绝对收敛与条件收敛 函数项级数的收敛域与和函数的概念 幂级数及其收敛半径、收敛区间(指开区间)和收敛域 幂级数的和函数 幂级数在其收敛区间内的基本性质 简单幂级数的和函数的求法 初等函数的幂级数展开式 函数的傅里叶(Fourier)系数与傅里叶级数 狄利克雷(Dirichlet)定理 函数在[-l,l]上的傅里叶级数 函数在[0,l]上的正弦级数和余弦级数