高中数学解析几何
高中数学解析几何技巧:
1、对于直线及其方程部分
从不同的角度去归类总结。角度一:以直线的斜率是否存在进行归类,可以将直线的方程分为两类。角度二:从倾斜角α分别在[0,π/2)、α=π/2和(π/2,π)的范围内,认识直线的特点。以此为基础突破,将直线方程的五种不同的形式套入其中。
2、对于椭圆和双曲线部分
椭圆和双曲线的性质差不多,许多性质也相似,往往差一个加减号,定义性质也是要灵活运用的,直线方程与曲线方程的联立代换是必须掌握的,光学性质也可用于帮助方便解题。
3、对于线性规划部分
首先要看得懂线性规划方程组所表示的区域。对于此类问题可以采用原点法,如果满足条件,那么区域包含原点;如果原点带入不满足条件,那么代表的区域不包含原点。
4、对于圆及其方程
需要熟记圆的标准方程和一般方程分别代表的含义。对于圆部分的学习,可以拓展初中学过的一切与圆有关的知识,包括三角形的内切圆、外切圆、圆周角、圆心角等概念以及点与圆的位置关系、圆与圆的位置关系、圆的内切正多边形的特征等。
5、对于椭圆、抛物线、双曲线
可以分别从其两个定义出发,明白焦点的来源、准线方程以及相关的焦距、顶点、突破离心率、通径的概念。每种圆锥曲线存在焦点在X轴和Y轴上的情况,要分别进行掌握。
6、选择题和填空题上
做这些题目的时候可以采用一些特殊值方法,多采用定义性质解决问题,结合余弦定理和正弦定理。注意不要一开始就用直线和曲线方程的联立,计算量很大,不利于时间的利用。
㈡ - - 高中数学解析几何所有公式
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h
正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2
圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l
弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=s*h 圆柱体 V=pi*r2h 不够的话去这儿看:http://www.globalsino.com/children/1/1children9883.html
㈢ 怎样学好高中数学中的解析几何
首先几何是一门研究图形的大小,位置和相互关系的学科,而解析几何是用函数解平面二维几何的学科。他即要考虑图形,又要考虑列式,千万别只会解方程,看到题,就是列方程,圆或圆椎曲线列个二元二次方程,再与直线(二元一次方程)作个方程组,都会有解,但运算量太大。这种情况先考虑圆椎曲线是否有特殊点(固定点),直线是否过定点。再者对于直线与圆椎曲线有两个交点时,要设交点时,最好设一正一负,这样代入圆椎曲线时可能相互约去,可减少计算量。
学好几何有几个前提,一是代数基础要根上,最起码怎样解方程,如果方程解错了,不仅会影响本题,肯定是错了,还会增加对本题答题时间,真是费力不讨好,另外,对这题本来是思路清晰,但就是算出矛盾结论时,会很奥恼,影响其它题。
其次对圆椎曲线基本性质要牢记,要学会运用。可总结一类题的共性解题方法。
最后是要学会标准作图,这样图形准,有些题可直接看出解题思路,尢其对选择或没有给图的大题。
㈣ 高中数学解析几何常用思想及方法
方程思想,
函数思想
数形结合思想
㈤ 高中数学解析几何基本不会,怎么办
给你个经验,解析几何其实不难,它一般都是这几个问题,切线问题
求值问题(包括求方程,求长度等)
轨迹问题
一般都是这三个
你主要是见少了
见多了就自然而然知道如何去找切口
但这三个问题不是全部,有时候也有特别的,例如2012年湖北高考的解析几何,要找到有关变量的关系进行计算
有时还需要基本的平面几何知识,不过不是很难找。一般都是上述的几个问题,不难的。
㈥ 数学高中解析几何有多恐怖
解析几何难点在于,它实在是太抽象了,需要超容量CPU大脑和放飞自我的脑洞才能理解其内涵。还有就是函数也很抽象,这给了出题人无限的想象空间用来折磨众学子。
解析几何系指借助坐标系,用代数方法研究集合对象之间的关系和性质的一门几何学分支,亦叫做坐标几何.这个是我网络的,我发现说的很好.
最好的方法就是画图,无论如何不能单凭想象.我在做这类题目的时候,都是依靠画图的,这样既清晰明了,又化难为简,以图解题是最正确的方法.
还有就是要 记住一些老师讲解过的公式,公式都是死的,就是要灵活运用.
解析几何中的常用公式及技巧:
1. 直线的倾斜角α的范围是[0,π)
2. 直线的倾斜角与斜率的变化关系:当倾斜角是锐角是,斜率k随着倾斜角α的增大而增大.当α是钝角时,k与α同增减.
3. 截距不是距离,截距相等时不要忘了过原点的特殊情形.
4. 两直线:L1 A1x+B1y+C1=0 L2:A2x+B2y+C2=0 L1⊥L2 A1A2+B1B2=0
5. 两直线的到角公式:L1到L2的角为θ,tanθ=
夹角为θ,tanθ=| |注意夹角和到角的区别
6. 点到直线的距离公式,两平行直线间距离的求法.
7. 有关对称的一些结论
1.点(a,b)关于x轴、y轴、原点、直线y=x的对称点分别是
(a,-b),(-a,b),(-a,-b),(b,a)
2..点和圆的位置关系的判别转化为点到圆心的距离与半径的大小关系.
点P(x0,y0),圆的方程:(x-a)2+(y-b)2=r2.
如果(x0-a)2+(y0-b)2>r2 点P(x0,y0)在圆外;
如果 (x0-a)2+(y0-b)2r 相离d=r 相切dr+R 两圆相离d=r+R 两圆相外切
|R-r|
㈦ 高中数学解析几何涉及到的课程有哪些啊
直线与方程属于。
还有向量,复数,平面几何。
最重要的是圆锥曲线,这个是高中的重点。
顺序应该是直线的方程,然后是圆锥曲线,后来可以拓展一些平面几何或者向量的方法。
解析几何需要你对二次方程的解的性质比较了解,比如韦达定理之类的要用的很灵活。
推荐一本书《解析几何的技巧》-单墫
㈧ 高中数学解析几何
如图为详细过程
㈨ 高中数学解析几何知识点是什么啊
目录:
基础篇
第一讲
平面解析几何初步
1.1
直线与(直线的)方程
1.2
圆与(圆的)方程
1.3
空间直角坐标系
高考热点题型评析与探索
本讲测试题
第二讲
椭圆
2.1
椭圆
2.2
直线与椭圆的关系
高考热点题型评析与探索
本讲测试题
第三讲
抛物线
3.1
抛物线
3.2
直线与抛物线的关系
高考热点题型评析与探索
本讲测试题
第四讲
双曲线
4.1
双曲线
4.2
直线与双曲线的关系
高考热点题型评析与探索
本讲测试题
综合应用篇
解析几何的理论应用
一、集合问题
二、方程、不等式问题
三、最大(小)值、取值范围问题
四、函数问题
理论应用综合测试题
解析几何的实际应用
一、直线型应用题
二、圆型应用题
三、椭圆型应用题
四、抛物线型应用题
五、双曲线型应用题
实际应用综合测试题
资料来源:龙门专题
高中数学---解析几何
㈩ 高中数学解析几何大题难题
有题意设P(-p/2,m) ,因为 A(0,2), F(p/2,0)
所以:向量PA*PF=0
向量模相等PA=PF
列式解方程组:P=4/3