数学精典
A. 数学经典有名的真实故事
4. 苏步青的故事
苏步青1902年9月出生在浙江省平阳县的一个山村里。虽然家境清贫,可他父母省吃俭用,拼死拼活也要供他上学。他在读初中时,对数学并不感兴趣,觉得数学太简单,一学就懂。可量,后来的一堂数学课影响了他一生的道路。
那是苏步青上初三时,他就读浙江省六十中来了一位刚从东京留学归来的教数学课的杨老师。第一堂课杨老师没有讲数学,而是讲故事。他说:“当今世界,弱肉强食,世界列强依仗船坚炮利,都想蚕食瓜分中国。中华亡国灭种的危险迫在眉睫,振兴科学,发展实业,救亡图存,在此一举。‘天下兴亡,匹夫有责’,在座的每一位同学都有责任。”他旁征博引,讲述了数学在现代科学技术发展中的巨大作用。这堂课的最后一句话是:“为了救亡图存,必须振兴科学。数学是科学的开路先锋,为了发展科学,必须学好数学。”苏步青一生不知听过多少堂课,但这一堂课使他终身难忘。
杨老师的课深深地打动了他,给他的思想注入了新的兴奋剂。读书,不仅为了摆脱个人困境,而是要拯救中国广大的苦难民众;读书,不仅是为了个人找出路,而是为中华民族求新生。当天晚上,苏步青辗转反侧,彻夜难眠。在杨老师的影响下,苏步青的兴趣从文学转向了数学,并从此立下了“读书不忘救国,救国不忘读书”的座右铭。一迷上数学,不管是酷暑隆冬,霜晨雪夜,苏步青只知道读书、思考、解题、演算,4年中演算了上万道数学习题。现在温州一中(即当时省立十中)还珍藏着苏步青一本几何练习薄,用毛笔书写,工工整整。中学毕业时,苏步青门门功课都在90分以上。
17岁时,苏步青赴日留学,并以第一名的成绩考取东京高等工业学校,在那里他如饥似渴地学习着。为国争光的信念驱使苏步青较早地进入了数学的研究领域,在完成学业的同时,写了30多篇论文,在微分几何方面取得令人瞩目的成果,并于1931年获得理学博士学位。获得博士之前,苏步青已在日本帝国大学数学系当讲师,正当日本一个大学准备聘他去任待遇优厚的副教授时,苏步青却决定回国,回到抚育他成长的祖任教。回到浙大任教授的苏步青,生活十分艰苦。面对困境,苏步青的回答是“吃苦算得了什么,我甘心情愿,因为我选择了一条正确的道路,这是一条爱国的光明之路啊!”
这就是老一辈数学家那颗爱国的赤子之心。
5. 华罗庚的故事
同学们都知道,华罗庚是一位靠自学成才的世界一流的数学家。他仅有初中文凭,因一篇论文在《科学》杂志上发表,得到数学家熊庆来的赏识,从此华罗庚北上清华园,开始了他的数学生涯。
1946年,华罗庚应邀去美国讲学,并被伊利诺大学高薪聘为终身教授,他的家属也随同到美国定居,有洋房和汽车,生活十分优裕。当时,不少人认为华罗庚是不会回来了。
新中国的诞生,牵动着热爱祖国的华罗庚的心。1950年,他毅然放弃在美国的优裕生活,回到了祖国,而且还给留美的中国学生写了一封公开信,动员大家回国参加社会主义建设。他在信中坦露出了一颗爱中华的赤子之心:“朋友们!梁园虽好,非久居之乡。归去来兮……为了国家民族,我们应当回去……”虽然数学没有国界,但数学家却有自己的祖国。
华罗庚从海外归来,受到党和人民的热烈欢迎,他回到清华园,被委任为数学系主任,不久又被任命为中国科学院数学研究所所长。从此,开始了他数学研究真正的黄金时期。他不但连续做出了令世界瞩目的突出成绩,同时满腔热情地关心、培养了一大批数学人才。为摘取数学王冠上的明珠,为应用数学研究、试验和推广,他倾注了大量心血。
据不完全统计,数十年间,华罗庚共发表了152篇重要的数学论文,出版了9部数学著作、11本数学科普著作。他还被选为科学院的国外院士和第三世界科学家的院士。
从初中毕业到人民数学家,华罗庚走过了一条曲折而辉煌的人生道路,为祖国争得了极大的荣誉。
6. 筹算女杰王贞仪
女数学家王贞仪(1768-1797 ),字德卿,江宁人,是清代学者王锡琛之女,著有《西洋筹算增删》一卷、《重订策算证讹》一卷、《象数窥余》四卷、《术算简存》五卷、《筹算易知》一卷。
从她遗留下来的著作可以看出,她是一位从事天文和筹算研究的女数学家。算筹,又被称为筹、策、筹策等,有时亦称为算子,是一种棒状的计算工具。一般是竹制或木制的一批同样长短粗细的小棒,也有用金属、玉、骨等质料制成的,不用时放在特制的算袋或算子筒里,使用时在特制的算板、毡或直接在桌上排布。应用“算筹”进行计算的方法叫做“筹算”,算筹传入日本称为“算术”。算筹在中国起源甚早,《老子》中有一句“善数者不用筹策”的记述,现在所见的最早记载是《孙子算经》,至明朝筹算渐渐为珠算所取代。
17世纪初叶,英国数学家纳皮尔发明了一种算筹计算法,明末介绍到我国,也称为“筹算”。清代著名数学家梅文鼎、戴震等人曾加以研究。戴震称其为“策算”。王贞仪也从事研究由西洋传入我国的这种筹算,并且写了三卷书向国人介绍西洋筹算。她在著作中对西洋筹算进行增补讲解,使之简易明了。王贞仪介绍的纳皮尔算筹乘除法,当时的读者认为容易了解,但与当时我国的乘除法筹算的方法相比,显得较繁杂,因此,数学家们没有使用西洋筹算,一直使用中国筹算法。今天的读者把中外筹算乘除法视为老古董,采用的是由外国传入的笔算四则运算,这种笔算于1903年才开始被使用,故我国与世界接轨使用笔算的历史只有100年。
7. 华裔算杰张圣蓉
张圣蓉1948年生于陕西省西安市,出生不久便随父母到台湾居住。她从小聪慧,喜爱读书,对数学情有独钟。张圣蓉中学毕业后考入著名的台湾大学数学系,1970年获学士学位。她不满足于此,又以优异成绩考入美国加利福尼亚大学,攻读数学博士学位。
“函数”是数学中最基本、最重要的概念。一位著名数学家说过“函数概念是近现代数学思想之花”。它的产生、发展实质上反映了近现代数学迅速发展的历程,同时也与函数论、解析数学的发展相辅相成。张圣蓉选择了现代数学的重要前沿分支之一“函数论”作为攻读对象。她的导师是一位著名的函数论世界大师,她要同函数论专家一道去摘取函数论皇冠上的明珠。
1974年,张圣蓉获伯克利加利福尼亚大学博士学位,从此在美国从事函数论的研究工作。她对函数论中复平面上的解析函数、多复变函数以及有界函数的解析函数的逼近等高深领域都有涉猎,1976年,28岁的张圣蓉通过对道格拉斯函数的研究撰写了世人没有发现的这类函数特征的论文,这为第二年著名数学家马歇尔解决著名的道格拉斯猜测铺平了道路。张圣蓉一鸣惊人,1977年又撰写出另一篇令函数论专家惊叹的论文,证明了马歇尔攻克道格拉斯猜测中的一个未发现的难题。在清一色的男数学家主导的函数论领域,她确立了自己的地位。
8数学家的墓志铭
一些数学家生前献身于数学,死后在他们的墓碑上,刻着代表着他们生平业绩的标志。
古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在主:“不要弄坏我的圆”。)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二。 德国数学家高斯在他研究发现了正十七边形的尺规作法后,便放弃原来立志学文的打算 而献身于数学,以至在数学上作出许多重大贡献。甚至他在遗嘱中曾建议为他建造正十七边形的棱柱为底座的墓碑。
16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁 道夫数,他死后别人便把这个数刻到他的墓碑上。 瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上 就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语
B. 最经典的数学名言警句
最经典的数学的名言警句
1、宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。——华罗庚
2、数学是知识的工具,亦是其它知识工具的泉源。所有研究顺序和度量的科学均和数学有关。——笛卡儿
3、数学对观察自然做出重要的贡献,它解释了规律结构中简单的原始元素,而天体就是用这些原始元素建立起来的。——开普勒
4、第一是数学,第二是数学,第三是数学。——伦琴
5、数学是人类智慧皇冠上最灿烂的明珠。——考特
6、一个国家只有数学蓬勃的发展,才能展现它国立的强大。数学的发展和至善和国家繁荣昌盛密切相关。——拿破仑
7、无限!再也没有其他问题如此深刻地打动过人类的心灵。——希尔伯特
8、当数学家导出方程式和公式,如同看到雕像、美丽的风景,听到优美的曲调等等一样而得到充分的快乐。——柯普宁
9、数学方法渗透并支配着一切自然科学的理论分支。它愈来愈成为衡量科学成就的主要标志了。——冯纽曼
10、在数学中最令我欣喜的,是那些能够被证明的东西。——罗素
11、以我一生最好的时光追寻那个目标……书已经写成了。现代人读或后代读都无关紧要,也许要等一百年才有一个读者。——开普勒
12、数学家本质上是个着迷者,不迷就没有数学。——努瓦列斯
13、新的数学方法和概念,常常比解决数学问题本身更重要。——华罗庚
14、数学是人类知识活动留下来最具威力的知识工具,是一些现象的根源。数学是不变的,是客观存在的,上帝必以数学法则建造宇宙。——笛卡儿
15、数学是一切知识中的最高形式。——柏拉图
16、哲学家也要学数学,因为他必须跳出浩如烟海的万变现象而抓住真正的实质。……又因为这是使灵魂过渡到真理和永存的捷径。——柏拉图
17、给我最大快乐的,不是已懂得知识,而是不断的学习;不是已有的东西,而是不断的获取;不是已达到的高度,而是继续不断的攀登。——高斯
18、不管数学的任一分支是多么抽象,总有一天会应用在这实际世界上。——罗巴切夫斯基(词语网())
19、数学之所以比一切其它科学受到尊重,一个理由是因为他的命题是绝对可靠和无可争辩的,而其它的科学经常处于被新发现的事实推翻的危险。…数学之所以有高声誉,另一个理由就是数学使得自然科学实现定理化,给予自然科学某种程度的可靠性。——爱因斯坦
20、数学是一种理性的精神,使人类的思维得以运用到最完善的程度。——克莱因
21、数学中的一些美丽定理具有这样的特性:它们极易从事实中归纳出来,但证明却隐藏的极深。——高斯
C. 数学老师必读的数学书籍经典
1、 伊恩·斯图尔特《数学万花筒:五光十色的数学趣题和逸事》
推荐语:Ian Stewart,英国著名数学教育家,一直致力于推动数学知识走通俗易懂的道路。他将自己收集的各种课外数学趣题及杂记整理成册,向我们展示了生活中一个个神秘而精彩的小故事——触摸动物游戏、纸牌三角、农民卖大头菜、漂亮猫、欺骗性骰子,还介绍了权威的数学大奖、著名数学家生平等知识性、趣味性内容。通过这些五光十色的小故事,读者不仅可以学会解决实际问题的思路和技巧,而且能够亲自体会成功的数学家是怎样从小培养数学学习兴趣、激发自己的求知欲的。这个趣味横生的“万花筒”,既展现了数学的五彩斑斓,又激励大家像作者一样去探索更宽广的美丽新世界。
2、 胡·施坦豪斯《数学万花镜》
推荐语:以图形、图片和模型等为主,辅以必要的初等的数学说明,生动地讲述了数学各个领域里的事实和问题。一些抽象而难以理解的数学理论,通过具体的可以捉摸的实物而具体化,易于被读者接受,从而引起读者对数学的兴趣和思考。
3、 张奠宙《数学的明天》
推荐语:纵论数学与数学教育,书中的一些观点高屋建瓴,发人深省。系《走向科学的明天》丛书之一,数学方面另有:《平面几何定理的机器证明》《集合与面积》《组合数学方兴未艾》《精益求精的最优化》《大千世界的随机现象》。
4、M、 克来因《古今数学思想》
推荐语:被评为“数学思想权威性的历史”,论述了从古代一直到20世纪头几十年中的重大数学创造和发展,目的是介绍中心思想和那些在数学历史的主要时期中逐渐冒出来并成为最突出的、对于促进和形成而后的数学活动有影响的主流工作。其所极度关心的还有:对数学本身的看法,不同时期这种看法的改变,以及数学家对于他们自己的成就的理解。
5、 盛立人《生活中的数学——管理必读》
推荐语:书分12 章,有实用价值,有深厚背景,有现代意识。
6、 徐胜蓝、孟东明《杨振宁传》
推荐语:两岸三地已出了五种版本,本书是第五版,我们能从这本不平凡的传记中获得启示和力量。
7、 刘云章、赵雄辉《数学解题思维策略——波利亚著作选讲》
推荐语:本书从我国实情出发精选了波利亚的三大名著的内容及有关论文,其中也不乏作者自己的观点和态度,便于读者尽快了解波利亚数学教育理论的梗概。
8、 杨世明、王雪琴《数学发现的艺术》
推荐语:乃国人研究波利亚理论之杰作。
9、 胡炳生《数学解题思路与方法》
推荐语:作者数学功底深厚,从数学竞赛角度来谈解题方法研究。本书非常值得一读。
10、 唐盛昌等《高中数学解题策略》
推荐语:本书既有较高的立意,又能切合教学实际,可资参考。
D. 经典数学书籍推荐
推荐关于来数学的书推荐:自
1、《什么是数学》:
既是为初学者也是为专家,既是为学生也是为教师,既是为哲学家也是为工程师而写的。它是一本世界著名的数学科普读物。
2、《数学及其历史》:
是一本通过数学史来讲授数学的教材,本书的作者通过讲述某些数学论题,组织与之相关的概念、人物、思想、问题背景及发展中的故事等材料,赋予读者数学是统一的观点。
3、《数学在19世纪的发展》:
介绍了数学科学在19世纪的发展。在本卷非常详尽且有批判性地分析了大批最重要的数学家的数学思想和贡献;介绍了大批物理学业绩;详细讨论了一些最重要的数学分支的缘起前景。
4、《简明复分析》:
本书较系统地讲述了复变函数论的基本理论和方法。内容包括: 微积分、Cauchy积分定理与公式、Weierstrass级数理论、Riemann映射定理、微分几何与Picard定理、多复变数函数浅引等。
E. 100个经典数学问题是什么
第01题 阿基米德分牛问题Archimedes' Problema Bovinum
太阳神有一牛群,由白、黑、花、棕四种颜色的公、母牛组成.
在公牛中,白牛数多于棕牛数,多出之数相当于黑牛数的1/2+1/3;黑牛数多于棕牛,多出之数相当于花牛数的1/4+1/5;花牛数多于棕牛数,多出之数相当于白牛数的1/6+1/7.
在母牛中,白牛数是全体黑牛数的1/3+1/4;黑牛数是全体花牛数1/4+1/5;花牛数
是全体棕牛数的1/5+1/6;棕牛数是全体白牛数的1/6+1/7.
问这牛群是怎样组成的?
第02题 德·梅齐里亚克的法码问题The Weight Problem of Bachet de Meziriac
一位商人有一个40磅的砝码,由于跌落在地而碎成4块.后来,称得每块碎片的重量都是整磅数,而且可以用这4块来称从1至40磅之间的任意整数磅的重物.
问这4块砝码碎片各重多少?
第03题 牛顿的草地与母牛问题Newton's Problem of the Fields and Cows
a头母牛将b块地上的牧草在c天内吃完了;
a'头母牛将b'块地上的牧草在c'天内吃完了;
a"头母牛将b"块地上的牧草在c"天内吃完了;
?求出从a到c"9个数量之间的关系?
第04题 贝韦克的七个7的问题Berwick's Problem of the Seven Sevens
在下面除法例题中,被除数被除数除尽:
* * 7 * * * * * * * ÷ * * * * 7 * = * * 7 * *
* * * * * *
* * * * * 7 *
* * * * * * *
* 7 * * * *
* 7 * * * *
* * * * * * *
* * * * 7 * *
* * * * * *
* * * * * *
用星号(*)标出的那些数位上的数字偶然被擦掉了,那些不见了的是些什么数字呢
?
第05题 柯克曼的女学生问题Kirkman's Schoolgirl Problem
某寄宿学校有十五名女生,她们经常每天三人一行地散步,问要怎样安排才能使每
个女生同其他每个女生同一行中散步,并恰好每周一次?
第06题 伯努利-欧拉关于装错信封的问题The Bernoulli-Euler Problem of the Misaddressed letters
求n个元素的排列,要求在排列中没有一个元素处于它应当占有的位置.
第07题 欧拉关于多边形的剖分问题Euler's Problem of Polygon Division
可以有多少种方法用对角线把一个n边多边形(平面凸多边形)剖分成三角形?
第08题 鲁卡斯的配偶夫妇问题Lucas' Problem of the Married Couples
n对夫妇围圆桌而坐,其座次是两个妇人之间坐一个男人,而没有一个男人和自己的
妻子并坐,问有多少种坐法?
第09题 卡亚姆的二项展开式Omar Khayyam's Binomial Expansion
当n是任意正整数时,求以a和b的幂表示的二项式a+b的n次幂.
第10题 柯西的平均值定理Cauchy's Mean Theorem
求证n个正数的几何平均值不大于这些数的算术平均值.
第11题 伯努利幂之和的问题Bernoulli's Power Sum Problem
确定指数p为正整数时最初n个自然数的p次幂的和S=1p+2p+3p+…+np.
第12题 欧拉数The Euler Number
求函数?x)=(1+1/x)x及?x)=(1+1/x)x+1当x无限增大时的极限值.
第13题 牛顿指数级数Newton's Exponential Series
将指数函数ex变换成各项为x的幂的级数.
第14题 麦凯特尔对数级数Nicolaus Mercator's Logarithmic Series
不用对数表,计算一个给定数的对数.
第15题 牛顿正弦及余弦级数Newton's Sine and Cosine Series
不用查表计算已知角的正弦及余弦三角函数.
第16题 正割与正切级数的安德烈推导法Andre's Derivation of the Secant and Tangent Series
在n个数1,2,3,…,n的一个排列c1,c2,…,cn中,如果没有一个元素ci的值介于两个邻近的值ci-1和ci+1之间,则称c1,c2,…,cn为1,2,3,…,n的一个屈折排列.
试利用屈折排列推导正割与正切的级数.
第17题 格雷戈里的反正切级数Gregory's Arc Tangent Series
已知三条边,不用查表求三角形的各角.
第18题 德布封的针问题Buffon's Needle Problem
在台面上画出一组间距为d的平行线,把长度为l(小于d)的一根针任意投掷在台面
上,问针触及两平行线之一的概率如何?
第19题 费马-欧拉素数定理The Fermat-Euler Prime Number Theorem
每个可表示为4n+1形式的素数,只能用一种两数平方和的形式来表示.
第20题 费马方程The Fermat Equation
求方程x2-dy2=1的整数解,其中d为非二次正整数.
第21题 费马-高斯不可能性定理The Fermat-Gauss Impossibility Theorem
证明两个立方数的和不可能为一立方数.
第22题 二次互反律The Quadratic Reciprocity Law
(欧拉-勒让德-高斯定理)奇素数p与q的勒让德互反符号取决于公式
(p/q)·(q/p)=(-1)[(p-1)/2]·[(q-1)/2]
第23题 高斯的代数基本定理Gauss' Fundamental Theorem of Algebra
每一个n次的方程zn+c1zn-1+c2zn-2+…+cn=0具有n个根.
第24题 斯图谟的根的个数问题Sturm's Problem of the Number of Roots
求实系数代数方程在已知区间上的实根的个数.
第25题 阿贝尔不可能性定理Abel's Impossibility Theorem
高于四次的方程一般不可能有代数解法.
第26题 赫米特-林德曼超越性定理The Hermite-Lindemann Transcedence Theorem
系数A不等于零,指数
F. 有什么经典的话最好是有关数学的
数学老师
告诉我:三角形是最稳定的爱情经验
提醒我
:
三角恋
是最危险的
...
G. 数学史上有哪些著名的经典故事
尼尔斯·亨利克·阿贝尔(1802年8月5日-1829年4月6日),挪威数学家,在很多数学领域做出了开创性的工作。他最著名的一个结果是首次完整给出了高于四次的一般代数方程没有一般形式的代数解的证明。这个问题是他那时最著名的未解决问题之一,悬疑达250多年。他也是椭圆函数领域的开拓者,阿贝尔函数的发现者。尽管阿贝尔成就极高,却在生前没有得到认可,他的生活非常贫困。
在1828年冬天,阿贝尔的病逐渐严重起来。在他圣诞节去芬罗兰(Froland)探他的未婚妻克莱利·肯姆普(Crelly Kemp)期间,病情便更恶化。到1829年1月时,他已知自己寿命不长,出血的症状已无法否认。直至1829年4月6日凌晨,阿贝尔去世了,他的未婚妻坚持不要他人之助照顾阿贝尔,“单独占有这最後的时刻”。
H. 古代数学经典有哪些
张丘建--<张丘建算经>
《张丘建算经》三卷,据钱宝琮考,约成书于公元466~485年间.张丘建,北魏时清河(今山东临清一带)人,生平不详。最小公倍数的应用、等差数列各元素互求以及“百鸡术”等是其主要成就。“百鸡术”是世界著名的不定方程问题。13世纪意大利斐波那契《算经》、15世纪阿拉伯阿尔·卡西<<算术之钥》等著作中均出现有相同的问题。
朱世杰:《四元玉鉴》
朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算学启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创作有“四元术”(多元高次方程列式与消元解法)、“垛积法”(高阶等差数列求和)与“招差术”(高次内插法)
贾宪:〈〈黄帝九章算经细草〉〉
中国古典数学家在宋元时期达到了高峰,这一发展的序幕是“贾宪三角”(二项展开系数表)的发现及与之密切相关的高次开方法(“增乘开方法”)的创立。贾宪,北宋人,约于1050年左右完成〈〈黄帝九章算经细草〉〉,原书佚失,但其主要内容被杨辉(约13世纪中)著作所抄录,因能传世。杨辉〈〈详解九章算法〉〉(1261)载有“开方作法本源”图,注明“贾宪用此术”。这就是著名的“贾宪三角”,或称“杨辉三角”。〈〈详解九章算法〉〉同时录有贾宪进行高次幂开方的“增乘开方法”。
贾宪三角在西方文献中称“帕斯卡三角”,1654年为法国数学家 B·帕斯卡重新发现。
秦九韶:〈〈数书九章〉〉
秦九韶(约1202~1261),字道吉,四川安岳人,先后在湖北、安徽、江苏、浙江等地做官,1261年左右被贬至梅州(今广东梅县),不久死于任所。秦九韶与李冶、杨辉、朱世杰并称宋元数学四大家。他早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的〈〈数书九章〉〉。〈〈数书九章〉〉全书共18卷,81题,分九大类(大衍、天时、田域、测望、赋役、钱谷、营建、军旅、市易)。其最重要的数学成就——“大衍总数术”(一次同余组解法)与“正负开方术”(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。
李冶:《测圆海镜》——开元术
随着高次方程数值求解技术的发展,列方程的方法也相应产生,这就是所谓“开元术”。在传世的宋元数学著作中,首先系统阐述开元术的是李冶的《测圆海镜》。
李冶(1192~1279)原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回家。1248年撰成《测圆海镜》,其主要目的就是说明用开元术列方程的方法。“开元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设x为某某”,可以说是符号代数的尝试。李冶还有另一部数学著作《益古演段》(1259),也是讲解开元术的。
刘徽: 《海岛算经》 《九章算术注》 《九章重差图》
263年左右,六会发现当圆内接正多边形的变数无限增加时,多边形的面积则可无限逼近圆面积,即所谓“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周
合体而无所失矣。”刘徽采用了以直代曲、无限趋近、“内外夹逼”的思想,创立了“割圆术”
《重差》原为《九章算术注》的第十卷,即后来的《海岛算经》,内容是测量目标物的高和远的计算方法。重差法是测量数学中的重要方法。