高考数学题型分布
1、高考数学分值分布
真懂。知识要掌握准确:在复习中,考生要树立稳扎稳打的习惯,对似懂非懂的基本问题必须实实在在地对待。方法要到位:比如证明问题常用的方法:比较法。2016、2017、2018年高考题都有它的应用,到现在没有变化吗?现在的比较法从高考题上就告诉我们不仅要会直接比较,还要会间接比较即调整后作差或作比,而且还要和导数相结合。
真算。提高自己运算能力,也就是加强算功。将运算进行到底,应当始终成为高考复习的一个原则。注重算法,算理。在平时运算时应注重精算、心算、悟算、不算的训练,注重把握好运算方向,选择好的运算公式,避免盲目运算。
㈡ 一般高考试卷题型是怎样分布的
□ 全国学习研究会考试研究中心 一、近年高考数学命题的中心是数学思想方法,考试命题有四个基本点 1。在基础中考能力,这主要体现在选择题和填空题。 2。在综合中考能力,主要体现在后三道大题。 3。在应用中考能力,在选择填空中,会出现一、二道大众数学的题目,在大题中有一道应用题。 4。在新型题中考能力。 这“四考能力”,围绕的中心就是考查数学思想方法。 二、题型特点 1。选择题 (1)概念性强:数学中的每个术语、符号,乃至习惯用语,往往都有明确具体的含义,这个特点反映到选择题中,表现出来的就是试题的概念性强。试题的陈述和信息的传递,都是以数学的学科规定与习惯为依据,绝不标新立异。 (2)量化突出:数量关系的研究是数学的一个重要的组成部分,也是数学考试中一项主要的内容。在高考的数学选择题中,定量型的试题所占的比重很大。而且,许多从形式上看为计算定量型选择题,其实不是简单或机械的计算问题,其中往往蕴涵了对概念、原理、性质和法则的考查,把这种考查与定量计算紧密地结合在一起,形成了量化突出的试题特点。 (3)充满思辨性:这个特点源于数学的高度抽象性、系统性和逻辑性。作为数学选择题,尤其是用于选择性考试的高考数学试题,只凭简单计算或直观感知便能正确作答的试题不多,几乎可以说并不存在。绝大多数的选择题,为了正确作答,或多或少总是要求考生具备一定的观察、分析和逻辑推断能力,思辨性的要求充满题目的字里行间。 (4)形数兼备:数学的研究对象不仅是数,还有图形,而且对数和图形的讨论与研究,不是孤立开来分割进行,而是有分有合,将它辨证统一起来。这个特色在高中数学中已经得到充分的显露。因此,在高考的数学选择题中,便反映出形数兼备这一特点,其表现是:几何选择题中常常隐藏着代数问题,而代数选择题中往往又寓有几何图形的问题。因此,数形结合与形数分离的解题方法是高考数学选择题的一种重要且有效的思想方法与解题方法。 (5)解法多样化:与其他学科比较,“一题多解”的现象在数学中表现突出。尤其是数学选择题,由于它有备选项,给试题的解答提供了丰富的有用信息,有相当大的提示性,为解题活动展现了广阔的天地,大大地增加了解答的途径和方法。常常潜藏着极其巧妙的解法,有利于对考生思维深度的考查。 2。填空题 填空题和选择题同属客观性试题,它们有许多共同特点:其形态短小精悍,考查目标集中,答案简短、明确、具体,不必填写解答过程,评分客观、公正、准确等等。不过填空题和选择题也有质的区别。首先,表现为填空题没有备选项。因此,解答时既有不受诱误的干扰之好处,又有缺乏提示的帮助之不足,对考生独立思考和求解,在能力要求上会高一些,长期以来,填空题的答对率一直低于选择题的答对率,也许这就是一个重要的原因。其次,填空题的结构,往往是在一个正确的命题或断言中,抽去其中的一些内容(既可以是条件,也可以是结论),留下空位,让考生独立填上,考查方法比较灵活。在对题目的阅读理解上,较之选择题,有时会显得较为费劲。当然并非常常如此,这将取决于命题者对试题的设计意图。 填空题的考点少,目标集中,否则,试题的区分度差,其考试信度和效度都难以得到保证。 这是因为:填空题要是考点多,解答过程长,影响结论的因素多,那么对于答错的考生便难以知道其出错的真正原因。有的可能是一窍不通,入手就错了,有的可能只是到了最后一步才出错,但他们在答卷上表现出来的情况一样,得相同的成绩,尽管它们的水平存在很大的差异。 3。解答题 解答题与填空题比较,同属提供型的试题,但也有本质的区别。首先,解答题应答时,考生不仅要提供出最后的结论,还得写出或说出解答过程的主要步骤,提供合理、合法的说明。填空题则无此要求,只要填写结果,省略过程,而且所填结果应力求简练、概括和准确。其次,试题内涵,解答题比起填空题要丰富得多。解答题的考点相对较多,综合性强,难度较高。解答题成绩的评定不仅看最后的结论,还要看其推演和论证过程,分情况评定分数,用以反映其差别,因而解答题命题的自由度,较之填空题大得多。 三、高考试卷的深层结构 根据题型特点,高考试卷的结构就十分明确了,我们将其分成三段: 四、如何突破120分 由于,基础中考能力,所以要注重解题的快法和巧法,能在30分钟左右,完成全部的选择填空题,这是夺取高分的关键。第二段是解答题的前三题,分值不到40分。这样前两个阶段的总分在110分左右。第三段是最后“三难”题,分值不到40分。“三难”题并不全难,难点的分值只有12分到18分,平均每道题只有4分到6分。首先,应在“三难”题中夺得12分到20分,剩下最难的步骤分在努力争取。这是根据试卷的深层结构做出的最佳解题策略。 所以,只做选择,填空和前三道大题是不够全面的。因为,后“三难”题中的容易部分比前面的基础部分还要容易,所以我们应该志在必得。在复习的时候,根据自己的情况,如果基础较好那首先争取选择,填空前三道大题得满分。然后,再提高解答“三难”题的能力,争取“三难”题得分20分到30分。这样,你的总分就可以超过130分,向145分冲刺。 所以最理想的得分计划是: 五、从现在做起 在平时当中一定要求自己选择填空一分钟一道题。用数学思想方法高速解答选择填空题。 注意不要傻算傻解,要学会巧算和巧解。选择填空和前3道解答题都是数学基础分。后3题不是只做第一问的问题,而应该猜想评分标准,按步骤由前向后争取高分。应该用猪八戒拱地的精神对付难题。由前边向后边拱,往往能先拱到4分,再往前拱能拱到8分一直到10分,最后剩下2分、4分得不到就算了。因为后边属于难点的分值,需要天才。 本期《高考研究》精选了8套选择题,4套中等解答题,并制定了时间限制(建议)。其难度是递进的,请同学们根据自己的实际情况来完成。
㈢ 高考数学有哪些题型,
总分150,单选十二个,60分,填空4道,20分,涉及解析几何,函数,数列等回等
其余为计算题偶答尔会出一道证明题,17题一般是三角函数之类的‘、
18,19题一般是空间几何,概率题
21题解析几何
22题不等式,数列函数,往往最后一道较难,可以按步骤给分。
此题型是全国统考试卷的题型,但大部分地区都差不多。
㈣ 高考数学出题范围
高考数学满分150分,选择题12道,填空题4道,每题5分,共80分,剩余的部分为几道大题,共70分,所以大题在整个卷子中占了相当大的比例,大题考察的范围分别是:
1.数列或者三角函数
2.立体几何
3.概率统计
4.圆锥曲线
5.导数
6.选修题(参数方程和不等式)
一、数列
这类型题目明显感觉就比较难了,但同时掌握了套路和方法,这部分题也没什么难的。
数列主要是求解通项公式和前n项和。首先是通项公式,要看题目中给出的条件形式,不同的形式对应不同的解题方法,其中主要包括公式法(定义法)、累加法、累乘法、待定系数法、数学归纳法 倒数变化法等,熟练应用这些方法并积累例题达到熟练的程度,然后就是求前n项和,这里一共有四种方法,倒序相加法、错位相减法、分组求和法以及裂项相消法,只要求前n项和只要考虑以上方法即可,多数情况下考察错位相减法,同时也是大家失分项,所以在这里一定要强加练习,规范书写步骤。
二、三角函数
对于三角函数的学习关键是熟记公式及灵活的运用公式,其实高中数学也是一门记忆学科,数学更需要背诵,很多知识、解法、定理往往更需要我们花时间背下来,很多时候,解题过程中被卡住,并不是因为想不到思路,而是因为简单的公式或者定理掌握不好,甚至是记反了,当然同时也是对题型的陌生和对解题方法的陌生。
对于三角函数的考法共有两种,分别是解三角形和三角函数本身,大概百分之十到二十的概率考解三角形,百分之八十到九十概率考对于三角函数本身的熟练运用,之所以解三角函数考的概率低是因为出现这样的题目简直太简单了,根本就是送分题,关于解三角函数,我们学习了三个公式,正弦定理、余弦定理和面积公式,所以除去求面积的话一定要用的面积公式之外,剩余的公式如果不能迅速判断,就都试一下,只要推出来要求的结果就可以了。另外一种就是考察三角函数本身,这样的题的套路一般都是给定一个相对较复杂的式子,然后问这个函数的定义域值域周期频率单调性等问题,解决方法就是首先利用和差倍半公式对原始式子进行化简,化简成一般式然后求解需要求的。所以归根结底还是要熟记公式。
三、概率统计
以理科数学为例,考点覆盖概率统计必修和选修的各个章节的内容,考查了抽样法、统计图表、数据的数字特征、用样本估计整体、回归分析、独立性检验、古典概型、几何概型、条件概率、相互独立事件的概率、独立重复试验的概率、离散型随机变量的分布列、数学期望与方差、超几何分布、二项分布、正态分布等基础知识和基本方法,这样听起来感觉内容多而杂,但其实只要掌握了基本知识,再加上例题的引导,后期各做一道练习题加以巩固,在高考中概率统计拿满分不是什么难事。但是简单的同时更加要求我们的仔细严谨程度,切记不要出现忘平方、忘开根号等低级错误。
四、立体几何
这个题相对于前面的给分题难度稍微大一些,可能会卡住一部分人,这道题有两到三问,前面问的某条线的大小或者证明某个线或面与另外一个线或面平行或垂直,最后一问是求二面角,这类题解题方法有两种,传统法和向量法,各有利弊。向量法可以说说任何情况下都可以使用,没有任何技术含量,肯定能解出正确答案,但是计算量大而且容易出错,应用向量法,首先建立空间直角坐标系,然后根据已知条件可以用向量表示每条直线,最后利用向量的知识求解题目,传统法求解则是同样要求我们熟练掌握各种性质定理和判定定理,在立体几何这一部分还有一个关键的要点,就是书写格式,这也是很多同学在平时考试结束后有这样的疑问“为什么要扣我这儿的分,我都证出来了······”之类的话,就是因为我们平时不注重书写步骤丢掉了很多不该丢掉的分数,在这一部分的推断题中,一定要注重条件和结论,几个结论推出来的一定切记缺一不可,否则即使之后结果得证也不会拿到全分。
五、圆锥曲线
仔细观察高考卷会发现圆锥曲线也是有一定的套路的,一般套路就是,前半部分是对基本性质的考察,后半部分考察与直线相交,且后半部分的步骤几乎都是一致的,即,设直线,然后将直线方程带入圆锥曲线,得一个有关x的二次方程,分析判别式,利用韦达定理的结果求解待求量,在这里要明确它的求解方法:直接法(性质法)、定义法、直译法、相关点法、参数法、交轨法、点差法。
六、导数和函数
导数与函数的题型大体分为三类:
1.关于单调性、最值、极值的考察
2.证明不等式
3.函数中含有字母,分类讨论字母的取值范围
七、参数方程
这一部分题目可以说成是送分题,这儿就不过多阐述了,唯一的方法就是考前狂刷一下历年高考题,这样就算拿满分也不是什么难事。
㈤ 高考数学题型分布。文科的,全国新课标II卷。按顺序,比如第一题一般是集合。那第二呢,三呢,后面的呢
几何证明选讲是高考的选考内容,主要考查相似三角形的判定与性质,射影定理,平行线分线段成比例定理;圆的切线定理,切割线定理,相交弦定理,圆周角定理以及圆内接四边形的判定与性质等.题目难度不大,以容易题为主.对本部分的考查主要是一道选考解答题,预测2012年仍会如此,难度不会太大.
矩阵与变换主要考查二阶矩阵的基本运算,主要是以解答题的形式出现.预测在2012年高考主要考查
(1)矩阵的逆矩阵;(2)利用系数矩阵的逆矩阵求点的拍袭源坐标或曲线方程.
坐标系与参数方程重点考查直线与圆的极坐标方程,极坐标与直角坐标的互化;直线,圆与椭圆的参数方程,参数方程与普通方程的互化,题目不难,考查“转化”为目的.预测2012高考中,极坐标、参数方程与直角坐标系间的互化仍是考查的热点,题目容易.
不等式选讲是高考的选考内容之一,主要考查绝对值的几何意义,绝对值不等式的解法以及不等式证明的基本方法(比较法、分析法、综合法).关于含有绝对值的不等式的问题.预测2012年高考在本部分可能会考查不等式的证明或求最值问题.
备考建议
选考内容由各省市自行选择内容和数量,选修系列包括几何证明选讲(选修4-1)、矩阵与变换(选修4-2)、坐标系与参数方程(选修4-4)、不等式选讲(选修4-5)等几部分内容。纵观近几年来的全国卷与各省市的试卷,试题在选择题、填空题、解答题中都有可能出现,题目不难;通常与其它数学内容联系而构成组合题,主要考查数形结合与分类讨论等数学思想与方法的灵活应用能力。从各地的高考试卷看,考生在备考时,应从下列考点夯实基础,做到以不变应万变:(1)理解三角形和圆的知识.(2)理解直线、圆和圆锥曲线的参数方程及应用.(3)了解矩阵与变换的内容.(4)掌握绝对值不等式、数学归纳法等证明方法。
解答策禅基略
选考题在高考试题中出现,是新课改的一大成果,包括平面几何证明选讲、矩阵与变换、参数方程与极坐标、不等式证明选讲四个专题的解答题各一道,所涉及试题一般比较简单,是大家应着力突破的部分
几何证明选讲是考查同学们推理能力、逻辑思维能力的好资料,题目以证明题为主,特别是一些定理的证明和用多个定理证明一个问题的题目,我们更应注意.
重点把握以下内容:1.射影定理的内容及其证明;2.圆周角与弦切角定理的内容及证明;3.圆幂定理的内容及其证明;4.圆内接四边形的性质与判定;5.平行投影的性质与圆锥曲线的统一定义.
矩阵与变换
1.伸压变换是指沿着特定坐标轴方向伸长或者压缩的变换,我们不能简单地把伸压变换理解为把平面上的点向下压,或者向上拉伸.2.在旋转变换中的θ为一个实数,叫做旋转角.当θ>0时,旋转的方向是逆时针,当θ<0时,旋转的方向则是顺时针.我们一般是讨论逆时针方向.3.投影变换不是一一映射.投影变换不仅仅依赖于投影的目标直线(点),还依赖于投影的方向.4.矩阵的乘法对应着变换的复合,
网络文库用户有奖调查
1/14
这样简单的变换可以复合成较为复杂的变换,反过来一些较复杂的几何变换实际上可以分解为若干简单的变换.(可以用二阶矩阵表示的)5.矩阵的乘法与数的乘法之间有着很多本质的区别,同样矩阵乘袭态法的性质与数的乘法之间也有着本质的区别.6.关于特征值与特征向量的讨论与矩阵变换性质、矩阵的乘积、行列式以及线性方程组的解等有密切的联系,或说是所学知识的一个综合使用.本部分的学习在本专题中既是重点,又是难点.大家可先从一些具体的几何变换的不变量入手,体会特征向量是客观存在的,并且是重要的,逐渐从直观到抽象更好地理解特征向量的概念.
1.极点的极径为0,极角为任意角,即极点的坐标不是惟一的.极径ρ的值也允许取负值,极角θ允许取任意角,当ρ<0时,点M(ρ,θ)位于极角θ的终边的反向延长线上,且OM=|ρ|,在这样的规定下,平面上的点的坐标不是惟一的,即给定极坐标后,可以确定平面上惟一的点,但给出平面上的点,其极坐标却不是惟一的.这有两种情况:①如果所给的点是极点,其极径确定,但极角可以是任意角;②如果所给点M的一个极坐标为(ρ,θ)(ρ≠0),则(ρ,2kπ+θ),(-ρ,(2k+1)π+θ)(k∈Z)也都是点M的极坐标.这两种情况都使点的极坐标不惟一,因此在解题的过程中要引起注意.
2.在进行极坐标与直角坐标的转化时,要求极坐标系的极点与直角坐标系的原点重合,极轴与x轴的正半轴重合,且长度单位相同,在这个前提下才能用转化公式.同时,在曲线的极坐标方程和直角坐标方程互化时,如遇约分,两边平方,两边同乘以ρ,去分母等变形,应特别注意变形的等价性.
3.对于极坐标方程,需要明确:①曲线上点的极坐标不一定满足方程.如点P(1,1)在方程ρ=θ表示的曲线上,但点P的其他形式的坐标都不满足方程;②曲线的极坐标方程不惟一,如ρ=1和ρ=-1都表示以极点为圆心,半径为1的圆.
4.同
㈥ 高考 数学 题型分布情况
两大知识点要求降低
据了解,根据教育部2007年高考数学大纲,有几个知识点的要求降低,如三角函数、立体几何两个模块的考试要求有所降低。对易、中、难题的比例有了更明确的规定,以容易题、中档题为试题主体,较难题只占30%。有关专家认为,今年数学大纲总体保持平稳,并在平稳过渡中力求试题创新。
从大纲来看,今年的考试难度要降。这次大纲明确强调中低档题不低于70%,如果坚持这个尺度,今年的难度肯定要降。从两个要求降低的知识点来看,三角函数本来的要求就是强调作为工具。你是第一个,就给你把.
㈦ 高考数学大题都是哪几种题型啊
高考大题抄题型内容(全国新袭课标卷):
17,数列或三角函数(包括解三角形)
18,空间几何
19,统计概率
20,解析几何(文),导数(理)
21,导数(文),解析几何(理)
三选一:
22,几何证明,23,极坐标与参数方程,24不等式选讲
㈧ 高考数学选择题多少分 高考数学分值分布
12道,每题5分,共60分
ps:全国卷的,有些地方自己出的试卷可能情况不一样!我同学江苏的表示没选择,只填空。
分值分布:选择60(12道)、填空20(4道)、大题70(12道各十二分+一道选做10分的题)【限于全国卷】
㈨ 想知道一张高考试卷 (数学)的题型分布情况
你是哪里的?各省市不一样
你可以考虑参考本地的模拟题,它的题型是当地名师的精华,试一试,祝你成功!