當前位置:首頁 » 語數英語 » 初三數學期中試卷

初三數學期中試卷

發布時間: 2020-11-22 08:47:26

❶ 初二數學期中考試卷

八年級數學試卷

一、選擇題:(每小題3分,共36分,每小題只有一個答案)

1.將不等式組 的解集在數軸上表示出來,應是 ( ).

2.已知,則下列不等式不成立的是 ( ).
A. B. C. D.
3.函數y=kx+b(k、b為常數,k0)的圖象如圖所示,則關於x的不等
式kx+b>0的解集為( ).
A.x>0 B.x<0 C.x<2 D.x>2
4.下列從左到右的變形中,是分解因式的是( )
A.a2–4a+5=a(a–4)+5 B.(x+3)(x+2)=x2+5x+6
C.a2–9b2=(a+3b)(a–3b) D.(x+3)(x–1)+1=x2+2x+2
5.下列各組代數式中沒有公因式的是 ( )
A.4a2bc與8abc2 B.a3b2+1與a2b3–1
C. b(a–2b)2與a(2b–a)2 D. x+1與x2–1
6.下列因式分解正確的是 ( )
A.–4a2+4b2=–4(a2–4b2)=–4(a+2b)(a–2b) B. 3m3–12m=3m(m2–4)
C.4x4y–12x2y2+7=4x2y(x2–3y)+7 D.4–9m2=(2+3m)(2–3m)
7.下列四個分式的運算中,其中運算結果正確的有 ( )
①; ②;③;④;
A.0個 B.1個 C.2個 D. 3個
8.若將分式中的a與b的值都擴大為原來的2倍,則這個分式的值將 ( )
A.擴大為原來的2倍 B. 分式的值不變 C. 縮小為原來的 D.縮小為原來的
9.幾個同學包租一輛麵包車去旅遊,麵包車的租價為180元,後來又增加了兩名同學,租車
價不變,結果每個同學比原來少分攤了3元車費.若設參加旅遊的同學共有x人,則根據題
意可列方程 ( )
A. B.
C.=2 D.
10. 兩地實際距離是500 m,畫在圖上的距離是25 cm,若在此圖上量得A、B兩地相距
為40 cm,則A、B兩地的實際距離是 ( )
A.800 m B。8000 m
C.32250 cm D。3225 m
11.下面兩個三角形一定相似的是 ( )
A.兩個等腰三角形 B。兩個直角三角形
C.兩個鈍角三角形 D。兩個等邊三角形
12. 已知,則下列比例式成立的是 ( )
A. B。 C。 D。
二、填空題:(每小題3分,共30分)
13.用不等式表示:
(1) x與5的差不小於x的2倍: ;
(2)小明的身高h超過了160cm: .
14.不等式的非負整數解是 .
15.將–x4–3x2+x提取公因式–x後,剩下的因式是 .
16.若4a4–ka2b+25b2是一個完全平方式,則k= .
17.若一個正方形的面積是9m2+24mn+16n2,則這個正方形的邊長是 .
18、分解因式: _______________.
19、當= 時,分式的值為.
20、已知關於x的不等式(1-a)x>2的解集為x< ,則a的取值范圍是__________.
21. 若點C是線段AB的黃金分割點,且AC>BC,那麼AB,AC,BC之間的關系式可用式子
來表示__________________。
22. 一根竹竿的高為1.5cm,影長為2m,同一時刻某塔影長為40m,則塔的高度為__________m。
三、計算題:(每小題5分,共計20分)
23、分解因式: 24、解方程:

25、先化簡,再求值:其中

26、解不等式組,並把解集在數軸上表示出來。

四、解答題(每小題7分,共14分)
28.已知多項式(a2+ka+25)–b2,在給定k的值的條件下可以因式分解即:前半部分可以寫成完全平方公式。.
(1)寫出常數k可能給定的值;
(2)針對其中一個給定的k值,寫出因式分解的過程.

29. 如圖,AB是斜靠的長梯,長4.4米,梯腳B距牆根1.6米,梯上點D距離牆1.4米,
已知△ADE∽△ABC,那麼點A與點D之間的長度AD為多少米?

五、操作與探索(每小題10分,共20分)
27.甲,乙兩地相距360km,新修的高速公路開通後,在甲,乙兩地之間行駛的長途汽車平均車速提高了50%,而從甲地到乙地的時間縮短了2h。試確定原來的平均車速。

28.某商廈進貨員預測一種應季襯衫能暢銷市場,就用8萬元購進這種襯衫,面市後果然供不應求。商廈又用17.6萬元購進了第二批這種襯衫,所購數量是第一批進量的二倍,但單價貴了4元。商廈銷售這種襯衫時每件定價都是58元,最後剩下150件按八折銷售,很快售完。在這兩筆生意中,商廈共盈利多少元?

❷ 2016九年級上冊數學期中考試試卷答案

目前沒有該答案
希望能幫到你,如果你的問題解決了,麻煩點一下採納

❸ 初三數學期中考試復習

考試心態很重要
首先同學們要趕快走出上次月考成功的喜悅與失敗的陰影,初三考的不僅僅是你的學習,而且需要過硬的心態,不能被一時的成功沖昏頭腦,更不能因一時的失敗而喪失信心。
知識關鍵在課堂
其次上課一定注意聽講,因為現在每個學校的進度都非常快,而知識點又非常難,相信很多同學都跟不上老師的進度,那上課一定注意聽講,把不會的知識點在 課上記下來,課下一定要主動問老師。一定要注意老師上課講的題是最精華,一定要弄懂。現在是初學不在乎你做多少題,關鍵在於你會多少題。一定要准備錯題 本,反復看,只要你能保證再出現以前錯過的題不再出錯,那我相信你的成績會非常理想的。
初中的題目有一點非常好,題型有很多相同性,等到你以後做題做多了,你會慢慢發現。所以我還可以教大家一招,當你看到非常容易出現的題型的時候,如果你實在不能理解,那我希望你暫時能背下來,第一可以保證此次期中考試的成績,同時你會隨著時間的推移慢慢理解它。

❹ 初一數學期中試卷

初一數學期中試題

班級 姓名 學號 成績

一、填空題(每小題3分,共36分)

1、x=5 方程 =2x-7的解。(填「是」或「不是」)

2、解方程 去分母後方程變形為 。

D

C

B

A

3、某廠預計今年比去年增產15%,年產量達到60萬噸,設去年該廠產量為x萬噸,則可列方程 。

4、如圖在Rt△ABC中,∠ACB=90º,

CD⊥AB於D,若∠B=32º,則∠ACD= º

5、如果|x-3|=2,那麼x= 或

6、如果x=1是方程 的解,那麼K= 。

7、把方程3x+7y=9化成用含y的代數式表示x= 。

8、方程2x+3y=12的正整數解有 。

9、正十二邊形的每個內角等於 度。

10、用加減法解方程組 消去未知數y後得到的一元一次方程



11、在△ABC中,AC=13cm,AB=8cm,那麼BC的長度應大於 厘米且小於 厘米。

12、為綠化家鄉,我校45名優秀團員去郊外植樹,女同學每人植6棵,男同學每人植樹8棵,勞動結束後共植樹320棵。設優秀團員中有x名男同學,y名女同學,依據題意可列方程組為 。

二、選擇題(每小題3分,共24分)

1、若三角形三個內角之比為2:3:5,則這個三角形是( )

A、銳角三角形 B、直角三角形 C、鈍角三角形 D、無法判斷

2、不能組成三角形的一組線段是( )

A、15cm,10cm,7cm B、4cm,5cm,10cm

C、8cm,8cm,2cm D、2cm,3cm,4cm

3、解方程變形正確的一項是( )

A、由2(x-3)-3(x+1)=2,得2x-3-3x+3=2

B、由-6x=-5,得x=-
C、由 ,得4(x+2)+3(2x-1)=4

D、由1- ,得1-
4、只用一種多邊形鋪地面是,不能鋪滿地面的是( )

A、三角形 B、四邊形 C、正五邊形 D、正六邊形

5、若多邊形的內角和與外角和之比為7:2,那麼這個多邊形的邊數是( )

A、7 B、8 C、9 D、10

B

A

C

D

E

6、 是方程組 的解,那麼a+b的值是( )

A、1 B、2 C、3 D、4

7、如圖五角星,∠A+∠B+∠C+∠D+∠E的和是( )

A、180° B、360° C、540° D、不能確定

8、為培養市民節約用水習慣,某市水廠規定:用水不超過10噸,每噸按0.8元收費,超過10噸的部分,按每噸1.5元收費。小華家三月份平均水費為每噸1元,那麼小華家三月份用水 噸。

A、12 B、14 C、16 D、20

三、解方程(組)(1、2題各5分,3題10分,共20分)

1、4(x+1)=1-2(x-3) 2、

3、 (要求用兩種解法分別完成)

四、解答題(每小題8分,共24分)

1、已知: 與 都滿足等式y=Kx+b

(1) 求K與b的值

(2) x為何值時,y=3

2、如圖所示△ABC中,AD平分∠BAC,∠B=42°,∠C=54°,求∠ADC的度數。

A

B

C

D

3、如圖∠A=120°,∠B=100°,∠C=140°,試判斷AE和CD是否平行,並說明理由。

A

E

D

C

B

五、實踐探索題(每小題8分,共16分)

1、小明的爸爸三年前為小明存一份3000元的教育儲蓄,今年到期時的本息和為3243元。請你幫小明算一算這種儲蓄的利率。

2、動物園的門票價格如下表規定。某校初一(1)、(2)兩班去游動物園,其中(1)班人數不到50人,(2)班有50多人。如果兩班都以班為單位分別購票,則一共應付1207元;如果兩班聯合起來,作為一個團體購票,則只需付909元。

購票人數
1—50人
51—100人
100人以上

每人門票價
13元
11元
9元

(1) 你如何判斷兩個班的總人數是否超過100人,說說你的理解。

(2) 列方程或方程組求兩班學生人數。

(3) 如果兩班不聯合買票,是不是初一(1)班學生非要買13元的票呢?你有什麼省錢的辦法來幫他們買票?說說你的理由。

(4) 你認為是否存在這樣可能:51—100人之間買票的錢數與100人以上的錢數相等?如果有,請寫出這種可能情況。

❺ 初一數學期中考試卷

七年級上學期期中測試題
一、選擇題(每小題3分,共30分)
1.我國最長的河流長江全長約 千米,用科學計數法表示為( )
A. 千米 B. 千米
C. 千米 D. 千米
2.下列各題正確的是( )
A. B.
C. D.
3.在 中負數的個數有( )
A. B. C. D.
4.下列各式從左到右正確的是( )
A. B.
C. D.
5.一個兩位數,個位上的數字是 ,十位上的數字是 ,用代數式表示這個兩位數是( )
A. B. C. D.
6. 的相反數是( )
A. B. C. D.
7.代數式 的值是 ,則 的值是( )
A. B. C. D.
8.若 ,則 的值是( )
A. B. C. D.
9.已知數 、 、 在數軸上的位置如圖所示,化簡 的結果是( )
A. B. C. D.

10.若 , , ,則下列大小關系中正確的是( )
A. B. ; C. D.
二、填空題(每小題3分,共30分)
11.如果把黃河的水位比警戒水位高 米,記作 米,
那麼 米,表示比警戒水位 米。
12. 的相反數是 ,倒數是 。 13.若 ,則 = 。
14.用四捨五入法對數 取近似值,保留三個有效數字,結果是是 。
15. 與 是同類項,則 。
16.用火柴棒按下圖的方式搭圖形,第 個圖形要 根火柴。

17.單項式 是關於 、 、 的五次單項式,則n=___________;
18.用計算器計算: 的按鍵順序是:

,顯示:___________。

19.一個多項式加上 得到 ,那麼這個多項式為___________;
20.觀察下面的幾個算式:



,…
根據你所發現的規律,請你直接寫出下面式子的結果:
___________。
三、解答題(共60分)
21.計算(16分)
(1) (2)0
(3) (4)[ ( ) ]÷5

22.(8分)化簡、求值
(1)化簡:
(2)先化簡再求值 ,其中 .

23.(8分)把下列各數填入相應的大括弧內:
11, ,6.5,-8, ,0,1,-1,-3.14
(1)正數集合{ …}
(2)負數集合{…}
(3)整數集合{…}
(4)正整數集合{…}
(5)負整數集合{…}
(6)正分數集合{…}
(7)負分數集合{…}
(8)有理數集合{…}
24.(6分)醫學研究表明,身高是具有一定遺傳性的,因此可以根據父母身高預測子女成年後的身高,其計算方法是:
兒子身高= (父親身高+母親身高)×1.08
女兒身高= (父親身高×0.923+母親身高)
(1)如果某對父母的身高分別是m米和n米,請人預測他們兒子和女兒成年後的身高。(用代數式表示)
(2)小明(男)的父親身高1.75米,母親身高1.62米,求小明成年後的身高。

25.(6分)「十一」黃金周期期間,黃山風景區在7天假期中每天遊客的人數變化如下表(正數表示比前一天多的人數,負數表示前一天少的人數)
日期 1日 2日 3日 4日 5日 6日 7日
人數變化(萬人) +1.6 +0.8 +0.4 -0.4 -0.8 +0.2 -1.2
(1)請判斷七天內遊客人數最多的是 日,最少的是 日,
它們相差 萬人。
(2)如果最多一天有遊客3萬人,那麼9月30日遊客有 萬人。
26.(8分)按下列程序計算,把答案寫在表格內:
(1)填寫表格:

輸入n

3

—2

—3

輸出答案 1 1 1 1 …
(2)請將題中計算程序用代數式表達出來,並給予化簡.

27.(8分)李老師給學生出了一道題:當 時,
求 的值.題目出完後,小聰說:「老師給的條件 是多餘的.」小明說:「不給這兩個條件,就不能求出結果,所以不是多餘的.」你認為他們誰說的有道理?為什麼?

參考答案:
一 .1. A 2. D 3. B 4. C 5. D 6. D 7. B 8. B 9. A 10. C.
二.11、低。12、2.5,—0.4。13、± 。14、5.66×106。15、0。16、2n+1。17.3;
18.2、0、—、4、×、(—)、5、=,40。 19. ;
20.1000.提示:通過觀察發現題設條件中的規律是等式右邊的數是自然數的完全平方,且等於左邊位於中間的一個自然數的平方,所以1+2+3+…+99+100+99+…+3+2+1=1002=10000;
三. 21.(1) ; (2) ; (3) ; (4) .
22.(1) 。(2)3.22。
23.(1)11,6.5, ,1, (2) ,-8,-1,-3.14
(3)11,-8,,0,1,-1, (4)11,1.
(5)-8,-1 (6)6.5,
(7) ,-3.14 (8)11, ,6.5,-8, ,0,1,-1,-3.14
24.(1)兒子成年後的身高:0.54(m+n);女兒成年後的身高: (0.623 m+ n)。
(2)約為1.82米。
25.(1)3、7、2.2 , (2) 0.2 .
26.解:代數式為: ,化簡結果為:1
27.原式= ,合並得結果為0,與a、b的取值無關,所以小明說的有道理

❻ 誰有2018-2019附中博才九年級期中考試數學試卷答案

去度娘那查一查應該有你需要的答案。

❼ 九年級數學期中考試卷

1.下列運算正確的是 ( ▲ )
A. B. C. D.
2.在賓士、寶馬、豐田、三菱等汽車標志圖形中,為中心對稱圖形的是(▲)

A B C D
3. 如圖,數軸上 兩點分別對應實數 ,則下列結論正確的是 ( ▲ )
A. B.
C. D.
4.如圖所示,正方形ABCD中,點E是CD邊上一點,連結AE,交對角線BD於 F,連結CF,則圖中全等三角形共有 ( ▲ )
A.1對 B.2對 C.3對 D.4對
5.初三(8)班學生准備利用「五一」假期外出旅遊,旅遊公司設計了幾條線路供學生們選擇.班長對全體學生進行民意調查,從而最終決定選擇哪一條線路.下列調查數據中最值得關注的是( ▲ )
A. 平均數 B. 中位數 C.眾數 D. 方差
6. 若方程x2-4x-2=0的兩實根為x1、x2,則x1 + x2的值為 ( ▲ ) [來源:學科網]
A.-4 B. 4 C. 8 D. 6

7. 已知一個凸n邊形的內角和等於540°,那麼n的值是 ( ▲ )
A.4 B.5 C.6 D.7
8.若兩圓的半徑分別為2和3,圓心距為5,則兩圓的位置關系為( ▲ )
A.外離 B.內切 C.相交 D.外切
9.將點A(4,0)繞著原點O順時針方向旋轉30°角到對應點A′,則點A′的坐標是( ▲ )
A.(23,2) B.(4,-2) C.(23,-2) D.(2, -23)
10.如圖,直線l是一條河,P、Q兩地相距8千米,P、Q兩地到l的距離分別為2千米、5千米,欲在l上的某點M處修建一個水泵站,向P、Q兩地供水,現有如下四種鋪設方案,圖中實線表示鋪設的管道,則鋪設的管道最短的是( ▲ )

二、填空題(本大題共8小題,每小題2分,共16分.不需寫出解答過程,只需把答案直接填寫在答題卡上相應的位置處)
11.分解因式: =____▲_ ___ .
12.在函數 中,自變數x的取值范圍是 ▲ .
13.今年桃花節之前,陽山桃花節組委會共收到約1.2萬條楹聯應征作品,這個數據用科學記數法可表示為 ▲ 條.
14.如圖,已知AB∥CD, °,則 為 ▲ °
15.若用半徑為9,圓心角為 的扇形圍成一個圓錐的側面(接縫忽略不計) ,則這個圓錐的底面半徑是 ▲ ;
16.2011年3月11日,日本發生了9.0級大地震.福島縣某地一水塔發生了嚴重沉陷(未傾斜).如圖,已知地震前,在距該水塔30米的A處測得塔頂B的仰角為60°;地震後,在A處測得塔頂B的仰角為45°,則該水塔沉陷了 ▲ 米.

17.如圖,點A在雙曲線 上,點B在雙曲線 上,且AB∥x軸,C、D在x軸上,若四邊形ABCD為平行四邊形,則它的面積為 ▲ 。
18.如圖在三角形紙片ABC中,已知∠ABC=90º,AC=5,BC=4,過點A作直線l平行於BC,折疊三角形紙片ABC,使直角頂點B落在直線l上的點P處,摺痕為MN,當點P在直線l上移動時,摺痕的 端點M、N也隨之移動,若限定端點M、N分別在AB、AC邊上(包括端點)移動,則線段AP長度的最大值與最小值的差為 ▲ .

三、解答題(本大題共10小題,共84分.請在答題卡指定區域內作答,解答時應寫出文字說明、證明過程或演算步驟)
19.(本題滿分8分)計算:
(1) ; (2)2x-2 - 8x2-4.
20.(本題滿分8分)(1)解方程: (2)解不等式組:

21.(本題滿分8分)某班將舉行 「慶祝建黨90周年知識競賽」 活動,班長安排小明購買獎品,下面兩圖是小明買回獎品時與班長的對話情境:

請根據上面的信息, 試求兩種筆記本各買了多少本?

22.(本小題滿分8分)如圖,AB為⊙O的直徑,BC為⊙O的切線,AC交⊙O於點E,D 為AC上一點,∠AOD=∠C,若AE=8,tanA= ,求OD的長.

23.(本小題滿分6分) 為了更好地 了解近階段九年級學生的近期目標,惠山區關工委 設計了如下調查問卷:你認為近階段的主要學習目標是哪一個?(此為單選題)
A.升入四星普通高中,為考上理想大學作準備;
B.升入三星級普通高中,將來能考上大學就行;
C.升入五年制高職類學校,以後做一名高級技師;
D.升入中等職業類學校,做一名普通工人就行;
E.等待初中畢業,不想再讀書了.
在本區3000名九年級學生中隨機調查了部分 學生後整理並製作了如下的統計圖:

根據以上信息解答下列問題:
(1) 本次共調查了 名學生;
(2) 補全條形統計圖,並計算扇形統計圖中m=_______;
(3) 我區想繼續升入普通高中(含四星和三星)的大約有多少人?

24.(本題滿分8分)小明設計了一種游戲,游戲規則是: 開始時,一枚棋子先放在如圖①所示的起始位置,然後擲一枚均勻的正四面體骰子,如圖②所示,各頂點分別表示1,2,3,4,朝上頂點所表示的數即為骰子所擲的點數,根據骰子所擲的點數相應的移動棋子的步數,每一步棋子就移動一格,若步數用盡,棋子正好到達迷宮中心,小明就獲勝,若棋子到達 迷宮中心, 步數仍然沒有用盡,則棋子還要從迷宮中心後退餘下的步數(例如小明第一次拋到3, 則棋子應落在圖①中的第三格位置,第二次仍拋到3,則棋子最後應落在圖①中的第四格位置).
現在小明連續擲骰子兩次,求小明獲勝的概率.(請用「畫樹狀圖」或「列表」的方法給出分析過程,並寫出結果)

25.(本題滿分10分)如圖,直角梯形ABCD的頂點A、B、C的坐標分別為(12,0)、
(2,0)和(2,3),AB∥CD,∠C=90°,CD=CB.
(1)求點D的坐標;
(2)拋物線y=ax2+bx+c過原點O與點(7,1),且對稱軸為過點(4,3)與y軸平行的直線,求拋物線的函數關系式;
(3)在(2)中的拋物線上是否存在一點P,使得PA+PB+PC+PD最小?若存在,求出點P的坐標;若不存在,請說明理由.

26.(本題滿分10分)閱讀與證明:
如圖,已知正方形ABCD中,E、F分別是CD、BC上的點,且∠EAF=45°,
求證:BF+DE=EF.
分析:證明一條線段等於另兩條線段的和,常用「截長法」或「補短法」,將線段BF、DE放在同一直線上,構造出一條與BF+DE相等的線段.如圖1延長ED至點F′,使DF′=BF,連接A F′,易證△ABF≌△ADF′,進一步證明△AEF≌△AEF′,即可得結論.
(1)請你將下面的證明過程補充完整.
證明:延長ED至F′,使DF′=BF,
∵ 四邊形ABCD是正方形
∴ AB=AD,∠ABF=∠ADF′=90°,
∴ △ABF≌△ADF』(SAS)

應用與拓展:如圖建立平面直角坐標系,使頂點A與坐標原點O重合,邊OB、OD分別在x軸、y軸的正半軸上.
(2)設正方形邊長OB為30,當E為CD中點時,試問F為BC的幾等分點?並求此時F點的坐標;
(3)設正方形邊長OB為30,當EF最短時,直接寫出直線EF的解析式: .

27.(本小題滿分10分)如圖,OB是矩形OABC的對角線,拋物線y=-13x2+x+6經過B、C兩點.
(1)求點B的坐標;
(2)D、E分別是OC、OB上的點,OD=5,OE=2EB,過D、E的直線交 軸於F,試說明OE⊥ DF;
(3)若點M是(2)中直線DE上的一個動點,在x軸上方的平面內是否存在另一個點N,使以O、D、M、N為頂點的四邊形是菱形?若存在,請求出點N的坐標;若不存在,請說明理由.

28.(本題滿分8分)如圖,某汽車的底盤所在直線恰好經過兩輪胎的圓心,兩輪的半徑均為60 cm,兩輪胎的圓心距為260 cm(即PQ=260 cm),前輪圓心P到汽車底盤最前端點M的距離為80 cm,現汽車要駛過一個高為80 cm的台階(即OA=80 cm),若直接行駛會「碰傷」汽車.
(1)為保證汽車前輪安全通過, 小明准備建造一個斜坡AB (如圖所示),那麼小明建造的斜坡的坡角α最大為多少度?(精確到0.1度)
(2)在(1)的條件下,汽車能否安全通過此改造後的台階(即汽車底盤不被台階刮到)?並說明理由.

其實還有好多卷子,望採納》... (有些圖沒了)

熱點內容
如何飛行 發布:2025-09-19 22:36:58 瀏覽:76
山東數學建模 發布:2025-09-19 18:43:59 瀏覽:882
高一上學期物理試卷 發布:2025-09-19 18:33:36 瀏覽:594
舞蹈教學組合 發布:2025-09-19 15:23:55 瀏覽:747
教學課件ppt模板免費 發布:2025-09-19 14:32:50 瀏覽:169
成都最美教師 發布:2025-09-19 13:09:19 瀏覽:871
寫作教學 發布:2025-09-19 09:54:54 瀏覽:485
初三數學動點題 發布:2025-09-19 09:23:23 瀏覽:958
高考制度歷史 發布:2025-09-19 08:57:08 瀏覽:69
小學師德考核登記表 發布:2025-09-19 07:44:03 瀏覽:662