當前位置:首頁 » 語數英語 » 數學符號比

數學符號比

發布時間: 2021-08-08 20:44:03

A. 數學符號

數量符號
如:i,2+i,a,x,自然對數底e,圓周率π。

運算符號
如加號(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的並集(∪),交集(∩),根號(√),對數(log,lg,ln),比(:),微分(dx),積分(∫),曲線積分(∮)等。

關系符號
如「=」是等號,「≈」是近似符號,「≠」是不等號,「>」是大於符號,「<」是小於符號,「≥」是大於或等於符號(也可寫作「≮」),「≤」是小於或等於符號(也可寫作「≯」),。「→ 」表示變數變化的趨勢,「∽」是相似符號,「≌」是全等號,「‖」是平行符號,「⊥」是垂直符號,「∝」是成正比符號,(沒有成反比符號,但可以用成正比符號配倒數當作成反比)「∈」是屬於符號,「⊆」是「包含」符號等。

結合符號
如小括弧「()」中括弧「〔〕」,大括弧「{}」橫線「—」

性質符號
如正號「+」,負號「-」,絕對值符號「| |」正負號「±」

省略符號
如三角形(△),直角三角形(Rt△),正弦(sin),餘弦(cos),x的函數(f(x)),極限(lim),角(∠), ∵因為,(一個腳站著的,站不住) ∴所以,(兩個腳站著的,能站住) 總和(∑),連乘(∏),從n個元素中每次取出r個元素所有不同的組合數(C(r)(n) ),冪(A,Ac,Aq,x^n)等。

排列組合符號
C-組合數 A-排列數 N-元素的總個數 R-參與選擇的元素個數 !-階乘 ,如5!=5×4×3×2×1=120 C-Combination- 組合 A-Arrangement-排列

離散數學符號(未全)
∀ 全稱量詞 ∃ 存在量詞 ├ 斷定符(公式在L中可證) ╞ 滿足符(公式在E上有效,公式在E上可滿足) ┐ 命題的「非」運算 ∧ 命題的「合取」(「與」)運算 ∨ 命題的「析取」(「或」,「可兼或」)運算 → 命題的「條件」運算 ↔ 命題的「雙條件」運算的 A<=>B 命題A 與B 等價關系 A=>B 命題 A與 B的蘊涵關系 A* 公式A 的對偶公式 wff 合式公式 iff 當且僅當 ↑ 命題的「與非」 運算( 「與非門」 ) ↓ 命題的「或非」運算( 「或非門」 ) □ 模態詞「必然」 ◇ 模態詞「可能」 φ 空集 ∈ 屬於(∉不屬於) P(A) 集合A的冪集 |A| 集合A的點數 R^2=R○R [R^n=R^(n-1)○R] 關系R的「復合」 א 阿列夫 ⊆ 包含 ⊂(或下面加 ≠) 真包含 ∪ 集合的並運算 ∩ 集合的交運算 - (~) 集合的差運算 〡 限制 [X](右下角R) 集合關於關系R的等價類 A/ R 集合A上關於R的商集 [a] 元素a 產生的循環群 I (i大寫) 環,理想 Z/(n) 模n的同餘類集合 r(R) 關系 R的自反閉包 s(R) 關系 的對稱閉包 CP 命題演繹的定理(CP 規則) EG 存在推廣規則(存在量詞引入規則) ES 存在量詞特指規則(存在量詞消去規則) UG 全稱推廣規則(全稱量詞引入規則) US 全稱特指規則(全稱量詞消去規則) R 關系 r 相容關系 R○S 關系 與關系 的復合 domf 函數 的定義域(前域) ranf 函數 的值域 f:X→Y f是X到Y的函數 GCD(x,y) x,y最大公約數 LCM(x,y) x,y最小公倍數 aH(Ha) H 關於a的左(右)陪集 Ker(f) 同態映射f的核(或稱 f同態核) [1,n] 1到n的整數集合 d(u,v) 點u與點v間的距離 d(v) 點v的度數 G=(V,E) 點集為V,邊集為E的圖 W(G) 圖G的連通分支數 k(G) 圖G的點連通度 △(G) 圖G的最大點度 A(G) 圖G的鄰接矩陣 P(G) 圖G的可達矩陣 M(G) 圖G的關聯矩陣 C 復數集 N 自然數集(包含0在內) N* 正自然數集 P 素數集 Q 有理數集 R 實數集 Z 整數集 Set 集范疇 Top 拓撲空間范疇 Ab 交換群范疇 Grp 群范疇 Mon 單元半群范疇 Ring 有單位元的(結合)環范疇 Rng 環范疇 CRng 交換環范疇 R-mod 環R的左模範疇 mod-R 環R的右模範疇 Field 域范疇 Poset 偏序集范疇
編輯本段數學符號的意義
符號(Symbol) 意義(Meaning) = 等於 is equal to ≠ 不等於 is not equal to < 小於 is less than > 大於 is greater than || 平行 is parallel to ≥ 大於等於 is greater than or equal to ≤ 小於等於 is less than or equal to ≡ 恆等於或同餘 π 圓周率 |x| 絕對值 absolute value of X ∽ 相似 is similar to ≌ 全等 is equal to(especially for triangle ) >> 遠遠大於號 << 遠遠小於號 ∪ 並集 ∩ 交集 ⊆ 包含於 ⊙ 圓 φ bet 磁通系數;角度;系數(數學中常用作表示未知角) β fai 磁通;角(數學中常用作表示未知角) ∞ 無窮大 ln(x) 以e為底的對數 lg(x) 以10為底的對數 floor(x) 上取整函數 ceil(x) 下取整函數 x mod y 求余數 x - floor(x) 小數部分 ∫f(x)dx 不定積分 ∫[a:b]f(x)dx a到b的定積分

(您要的是這個嗎?)

B. 數學的(:)比符號表示什麼

應該沒有。角的表示一是角符號,二是構成角的兩邊ba、bc,常見的是銳角、直角、鈍角。但是周角中,ba丶bc的夾角就有兩個,角的表示法天然就有這個不足。只有到了三角函數,若以bc逆時針旋轉到ba則為正角(劣角),則bc順時針旋轉到ba即負角(優角),這才解決了劣角、優角,而且還可以是周角、度數=360k+a的角。

C. 一些常見的數學符號怎麼打比如連和號

如果是在WORD的話,用數學符號編輯器,在插入—符號—公式,
如果想在文本裡面打出來,得看你的輸入法,比如搜狗拼音,用右鍵-表情&符號-特殊符號-希臘/拉丁。因為數學符號一半都是希臘、拉丁字母

D. 數學符號意思

∈屬於符號,表示元素與集合之間的一種從屬關系
∏求積符號
∑求和符號
∕相當於除號÷
√算術平方根,如±2的平方是4,那麼4的算術平方根是2
∝正比於,常見於物理學,如a∝b說明當a增加,b也增加
∞無窮
表示一種趨向,+∞表示不斷變大的趨勢
∟直角符號
∠角符號
∣絕對值符號與除號
‖平行
刻畫兩直線的關系
∧交符號
邏輯基本符號,表示兩個命題同時發生則命題成立
∨並符號
邏輯基本符號,表示兩個命題有一個發生則命題成立
∩交符號
集合基本符號,表示兩個集合同時滿足
∪並符號
集合基本符號,表示至少滿足一個集合
∫不定積分符號
微積分基本符號
∮積分符號
微積分基本符號
∴所以
∵因為
∶比例符號
∷比例
∽屬於符號
集合基本符號
刻畫兩個集合間的從屬關系
≈約等於符號
≌相似符號
刻畫集合圖形的基本特徵
≈約等號
刻畫兩個關系式之間的關系
≠不等號
兩者存在差異的地方
≡同餘符號
數論基本符號,表示兩個整數除以同一個特定的整數余數相等,例如5=2×2+1,7=2×3+1,那麼5≡7
(mod
2)
≤不大於
關系符號
前者小於或者等於後者
≥不小於
關系符號
前者大於或者等於後者
≤遠小於等於
關系符號
前者遠小於後者或與後者相等
≥遠大於等於
關系符號
前者遠大於後者或與後者相等
≮非小於
同≥
≯非大於
同≤
⊙圓
⊙O表示圓心為O的圓
⊥垂直
刻畫兩直線或空間間關系
⊿三角形
⌒反三角函數
sin正弦函數
Cos餘弦函數
tan正切函數
cot餘切函數
sec正割函數
csc餘割函數
log對數
ln自然對數
lg常用對數
+加法
-減法
×乘法
÷除法

E. 數學符號都有哪些

數學符號的發明及使用比數字要晚,但其數量卻超過了數字。現在常用的數學符號已超過了200個,其中,每一個符號都有一段有趣的經歷。

1.運算符號:

如加號(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的並集(∪),交集(∩),根號(√ ̄),對數(log,lg,ln,lb),比(:),絕對值符號| |,微分(d),積分(∫),閉合曲面(曲線)積分(∮)等。

2.關系符號:

如「=」是等號,「≈」是近似符號(即約等於),「≠」是不等號,「>」是大於符號,「<」是小於符號,「≥」是大於或等於符號(也可寫作「≮」,即不小於),「≤」是小於或等於符號(也可寫作「≯」,即不大於),「→ 」表示變數變化的趨勢,「∽」是相似符號,「≌」是全等號,「∥」是平行符號,「⊥」是垂直符號,「∝」是正比例符號(表示反比例時可以利用倒數關系),「∈」是屬於符號,「⊆」是包含於符號,「⊇」是包含符號,「|」表示「能整除」(例如a|b表示「a能整除b」),x,y等任何字母都可以代表未知數。

3.結合符號:

如小括弧「()」,中括弧「[ ]」,大括弧「{ }」,橫線「—」

4.性質符號:

如正號「+」,負號「-」,正負號「

5.省略符號:

∵因為

∴所以

6.排列組合符號:

C組合數

A (或P)排列數

n元素的總個數

r參與選擇的元素個數

!階乘,如5!=5×4×3×2×1=120,規定0!=1

7.離散數學符號

∀全稱量詞

∃存在量詞

其他:

在Microsoft Word中可以插入一般應用條件下的所有數學符號,以Word2010軟體為例介紹操作方法:第1步,打開Word2010文檔窗口,單擊需要添加數學符號的公式,並將插入條游標定位到目標位置。第2步,在「公式工具/設計」功能區的「符號」分組中,單擊「其他」按鈕打開符號面板。默認顯示的「基礎數學」符號面板。用戶可以在「基礎數學」符號面板中找到最常用的數學符號。同樣地,Alt+41420(即壓下Alt不放,依次按41420(小鍵盤),最後放開Alt 就可以打出 √。

F. 數學符號,所有的

1、幾何符號
⊥ ∥ ∠ ⌒ ⊙ ≡ ≌ △
2、代數符號
∝ ∧ ∨ ~ ∫ ≠ ≤ ≥ ≈ ∞ ∶
3、運算符號
如加號(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的並集(∪),交集(∩),根號(√),對數(log,lg,ln),比(:),微分(dx),積分(∫),曲線積分(∮)等。
4、集合符號
∪ ∩ ∈
5、特殊符號
∑ π(圓周率)
6、推理符號
|a| ⊥ ∽ △ ∠ ∩ ∪ ≠ ≡ ± ≥ ≤ ∈ ←
↑ → ↓ ↖ ↗ ↘ ↙ ∥ ∧ ∨
&; §
① ② ③ ④ ⑤ ⑥ ⑦ ⑧ ⑨ ⑩
Γ Δ Θ Λ Ξ Ο Π Σ Φ Χ Ψ Ω
α β γ δ ε ζ η θ ι κ λ μ ν
ξ ο π ρ σ τ υ φ χ ψ ω
Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻ
ⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ
∈ ∏ ∑ ∕ √ ∝ ∞ ∟ ∠ ∣ ∥ ∧ ∨ ∩ ∪ ∫ ∮
∴ ∵ ∶ ∷ ∽ ≈ ≌ ≒ ≠ ≡ ≤ ≥ ≦ ≧ ≮ ≯ ⊕ ⊙ ⊥
⊿ ⌒ ℃
指數0123:o123
7、數量符號
如:i,2+i,a,x,自然對數底e,圓周率π。
8、關系符號
如「=」是等號,「≈」是近似符號,「≠」是不等號,「>」是大於符號,「<」是小於符號,「≥」是大於或等於符號(也可寫作「≮」),「≤」是小於或等於符號(也可寫作「≯」),。「→ 」表示變數變化的趨勢,「∽」是相似符號,「≌」是全等號,「∥」是平行符號,「⊥」是垂直符號,「∝」是成正比符號,(沒有成反比符號,但可以用成正比符號配倒數當作成反比)「∈」是屬於符號,「??」是「包含」符號等。
9、結合符號
如小括弧「()」中括弧「[]」,大括弧「{}」橫線「—」
10、性質符號
如正號「+」,負號「-」,絕對值符號「| |」正負號「±」
11、省略符號
如三角形(△),直角三角形(Rt△),正弦(sin),餘弦(cos),x的函數(f(x)),極限(lim),角(∠),
∵因為,(一個腳站著的,站不住)
∴所以,(兩個腳站著的,能站住) 總和(∑),連乘(∏),從n個元素中每次取出r個元素所有不同的組合數(C(r)(n) ),冪(A,Ac,Aq,x^n)等。
12、排列組合符號
C-組合數
A-排列數
N-元素的總個數
R-參與選擇的元素個數
!-階乘 ,如5!=5×4×3×2×1=120
C-Combination- 組合
A-Arrangement-排列

G. 數學符號是什麼符號

數學符號的發明及使用比數字要晚,但其數量卻超過了數字。現代數學常用的數學符號已超過了200個,其中,每一個符號都有一段有趣的經歷。

運算符號

如加號(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的並集(∪),交集(∩),根號(√ ̄),對數(log,lg,ln,lb),比(:),絕對值符號| |,微分(d),積分(∫),閉合曲面(曲線)積分(∮)等。

關系符號

如「=」是等號,「≈」是近似符號(即約等於),「≠」是不等號,「>」是大於符號,「<」是小於符號,「≥」是大於或等於符號(也可寫作「≮」,即不小於),「≤」是小於或等於符號(也可寫作「≯」,即不大於),「→ 」表示變數變化的趨勢等。

(7)數學符號比擴展閱讀:

數學符號的發展:

例如加號曾經有好幾種,現代數學通用「+」號。「+」號是由拉文「et」(「和」的意思)演變而來的。十六世紀,義大利科學家塔塔里亞用義大利文「plu」(「加」的意思)的第一個字母表示加,草為「μ」最後都變成了「+」號。「-」號是從拉丁文「minus」(「減」的意思)演變來的,一開始簡寫為m,再因快速書寫而簡化為「-」了。

也有人說,賣酒的商人用「-」表示酒桶里的酒賣了多少。以後,當把新酒灌入大桶的時候,就在「-」上加一豎,意思是把原線條勾銷,這樣就成了個「+」號。到了十五世紀,德國數學家魏德美正式確定:「+」用作加號,「-」用作減號。

乘號曾經用過十幾種,現代數學通用兩種。一個是「×」,最早是英國數學家奧屈特1631年提出的;一個是「·」,最早是英國數學家赫銳奧特首創的。德國數學家萊布尼茨認為:「×」號像拉丁字母「X」,可能引起混淆而加以反對,並贊成用「·」號(事實上點乘在某些情況下亦易與小數點相混淆)。後來他還提出用「∩「表示相乘。這個符號在現代已應用到集合論中了。

H. 有誰有數學上的表示「任意」和「存在」的符號

「任意」:∀;「存在」:∃

全稱量詞:短語「對所有的」,「對任意的」在陳述中表示整體或內全部的含義,邏容輯中通常叫做全稱量詞,並用符號「」表示。

存在量詞:短語「存在一個」,「至少有一個」在陳述中表示個別或者一部分的含義,在邏輯中通常叫做存在量詞,並用符號「」表示。

常見的存在量詞還有「有些」、「有一個」、「對某個」、「部分」等。

特稱命題「存在M中的一個x,使p(x)成立」。簡記為:∃x∈M,p(x)。

讀作:存在一個x屬於M,使p(x)成立。

(8)數學符號比擴展閱讀:

1、全稱量詞與全稱命題:

全稱命題:含有全稱量詞的命題,叫做全稱命題。

全稱命題的格式:「對M中任意一個x,有p(x)成立」的命題,記為x∈M,p(x),讀作「對任意x屬於M,有p(x)成立」。

2、存在量詞與特稱命題:

特稱命題:含有存在量詞的命題,叫做特稱命題。

「存在M中的一個x0,使p(x0)成立」的命題,記為?x0∈M,p(x0),讀作「存在一個x0屬於M,使p(x0)成立」。

I. 和中很像的數學符號是什麼意思

是這個嗎

Φ

Phi(大寫Φ,小寫φ),是第二十一個希臘字母。

希臘小寫字母 ,左上角的彎是開口的;而用作符號時,通常會寫作 ,變了一個縮小了的大寫Φ的形狀(Unicode: U+03D5)。

大寫的Φ用於:

物理學上的磁通量

符號用於:

物理上波動的相

電流、電壓的相位

黃金分割的符號;黃金分割數,Φ=[(√5)+1]/2

數學上復數的軛數 (argument of a complex number)

立體坐標中,一直線與 z-軸之間的夾角

歐拉函數

工程學上,表示直徑大小

數學上代表空集

熱點內容
2年級的英語 發布:2025-07-05 13:33:31 瀏覽:773
初中物理電動機 發布:2025-07-05 11:48:09 瀏覽:245
慈利教育網 發布:2025-07-05 11:15:09 瀏覽:622
奧特曼黑歷史 發布:2025-07-05 05:13:59 瀏覽:8
2017全國二語文試卷 發布:2025-07-05 02:17:04 瀏覽:679
德陽是哪個省的 發布:2025-07-05 01:20:18 瀏覽:562
歐豪年彩墨教學視頻 發布:2025-07-05 00:38:16 瀏覽:713
教學實踐內容 發布:2025-07-04 21:32:22 瀏覽:431
雲南教育論文 發布:2025-07-04 18:10:10 瀏覽:16
班主任培養總結 發布:2025-07-04 14:40:37 瀏覽:89