常數的數學期望
1. 一個常數的期望是多少
一個常數的期望是永遠不變,
如,一天等於24小時,
一小時第於60分,
一分等於60秒等好多。
對於2項分布(例子:在n次試驗中有k次成功,每次成功概率為p,他的分布列求數學期望和方內差)有ex=np
dx=np(1-p)
n為試驗次容數
p為成功的概率
對於幾何分布(每次試驗成功概率為p,一直試驗到成功為止)有ex=1/p
dx=p^2/q
還有任何分布列都通用的
dx=e(x)^2-(ex)^2
3. 常數的期望是什麼啊
就是常數本身
4. 平穩隨機過程的哪些數字特徵為常數:數學期望、 。
只有這個
為確定函數 常記作a(t)
表示隨機過程的幾個樣本函數的擺動中心
5. 為什麼常數的數學期望仍是常數
期望可以看做是平均數,一個常數的平均數當然是它本身。
6. 常數的數學期望是零嗎
設這個常數為C,則他的期望是E(C)=C就等於這個常數
不過方差是0
7. 數學期望的公式是什麼
E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) = X1*f1(X1) + X2*f2(X2) + …… + Xn*fn(Xn)
X ;1,X ;2,X ;3,……,X。
n為這離散型隨機變數,p(X1),p(X2),p(X3),……p(Xn)為這幾個數據的概率函數。在隨機出現的幾個數據中p(X1),p(X2),p(X3),……p(Xn)概率函數就理解為數據X1,X2,X3,……,Xn出現的頻率f(Xn).
(7)常數的數學期望擴展閱讀
在概率論和統計學中,數學期望(mean)(或均值,亦簡稱期望)是試驗中每次可能結果的概率乘以其結果的總和,是最基本的數學特徵之一。它反映隨機變數平均取值的大小。
需要注意的是,期望值並不一定等同於常識中的「期望」——「期望值」也許與每一個結果都不相等。期望值是該變數輸出值的平均數。期望值並不一定包含於變數的輸出值集合里。
大數定律規定,隨著重復次數接近無窮大,數值的算術平均值幾乎肯定地收斂於期望值。
離散型隨機變數與連續型隨機變數都是由隨機變數取值范圍(取值)確定。
8. 什麼叫數學期望
數學期望是概率論早期發展中就已產生的一個概念。當時研究的概率問題大多與賭博有關。假如某人在一局賭博中面臨如下的情況:在總共m+n種等可能出現的結果中,有m種結果可贏得α,其餘n種結果可贏得b), 則就是他在該局賭博中所能期望的收入。數學期望的這種初始形式早在1657年即由荷蘭數學家C.惠更斯明確提出。它是簡單算術平均的一種推廣。 設x為離散型隨機變數,它取值x0,x1,…的概率分別為p1,p2,…,則當級數時,定義它的期望為。這里之所以要求級數絕對收斂,是因為作為期望的這種平均,不應當依賴於求和的次序。若x 為連續型隨機變數,其密度函數為p(x),則當積分時,定義它的期望為。在一般場合,設x是概率空間(Ω,F,p)上的隨機變數,其分布函數為F(x),則當時,定義x的期望為 式中是斯蒂爾傑斯積分;或是隨機變數x 在Ω上對概率測度p的積分。然而,並非所有的隨機變數都具有期望。 隨機變數的期望,有下列性質:E(x+Y)=Ex+EY;若把常數α看作隨機變數,則Eα=α;若x≥0,則Ex≥0;若x與Y獨立,則E(XY)=Ex·EY;若隨機變數x1,x2,…,xn有聯合分布函數F(x1,x2,…,xn),則對一類n元函數
9. 數學期望的性質有哪些
數學期望的性質:
1、設X是隨機變數,C是常數,則E(CX)=CE(X)。
2、設X,Y是任意兩個內隨機變數,則容有E(X+Y)=E(X)+E(Y)。
3、設X,Y是相互獨立的隨機變數,則有E(XY)=E(X)E(Y)。
4、設C為常數,則E(C)=C。
(9)常數的數學期望擴展閱讀:
期望的應用
1、在統計學中,想要估算變數的期望值時,用到的方法是重復測量此變數的值,然後用所得數據的平均值來作為此變數的期望值的估計。
2、在概率分布中,數學期望值和方差或標准差是一種分布的重要特徵。
3、在古典力學中,物體重心的演算法與期望值的演算法近似,期望值也可以通過方差計算公式來計算方差:
4、實際生活中,賭博是數學期望值的一種常見應用。