當前位置:首頁 » 語數英語 » 數學斗圖

數學斗圖

發布時間: 2021-08-17 07:45:15

㈠ 求智力題,不要腦筋急轉彎 不要數學題 可帶圖片 考驗邏輯思維的

1.5隻雞,5天生了5個蛋。100天內要100個蛋,需要多少只雞?
2.3個人3天用3桶水,9個人9天用幾桶水?
3.三個孩子吃三個餅要用3分鍾,九十個孩子九十個餅要用多少時間?
4.怎樣使用最簡單的方法使X+I=IX等式成立?
5.買一雙高級女皮鞋要214元5角6分錢,請問買一隻要多少錢?
6.有三個小朋友在猜拳,一個出剪刀,一個出石頭,一個出布,請問三個人共有幾根指頭?
7.浪費掉人的一生的三分之一時間的會是什麼東西?
8.一把11厘米長的尺子,可否只刻3個整數刻度,即可用於量出1到11厘米之間的任何整數厘米長的物品長度?如果可以,問應刻哪幾個刻度?
9.考試做判斷題,小花擲骰子決定答案,但題目有20題,為什麼他卻扔了40次?
10.一個掛鍾敲六下要30秒,敲12下要幾秒?
11.什麼時候4-3=5?
12.王大嬸有三個兒子,這三個兒子又各有一個姐姐和妹妹,請問王大嬸共有幾個孩子?
13.塑料袋裡有六個橘子,如何均分給三個小孩,而塑料袋裡仍有二個橘子?(不可以分開橘子)
14.8個數字「8」,如何使它等於1000?
15.什麼時候,四減一等於五?
16.有一個年輕人,他要過一條河去辦事;但是,這條河沒有船也沒有橋。於是他便在上午游泳過河,只一個小時的時間他便游到了對岸,當天下午,河水的寬度以及流速都沒有變,更重要的是他的游泳速度也沒有變,可是他竟用了兩個半小時才游到河。
17.一口井7米深,有隻蝸牛從井底往上爬,白天爬3米,晚上往下墜2米。問蝸牛幾天能從井裡爬出來?
18.小白買了一盒蛟香,平均一卷蛟香可點燃半個小時。若他想以此測量45分鍾時間,他該如何計算?
19.三張分別寫有2,1,6的卡片,能否排成一個可以被43除盡的整數?
20.籃子里的7個萊果掉了4個在桌子上,還有一個不知掉到哪去了,飛飛把桌子上的萊果拾進籃子里,又吃了一個,請問籃子里還剩下幾個蘋果?
21.一個籃子里裝著五個蘋果,要分給五個人,要求每人分的一樣多,最後籃子里還要剩下一個蘋果,如何分(不能切開蘋果)
22.一斤白菜5角錢,一斤蘿卜6角錢,那一斤排骨多少錢?
23.在路上,它翻了一個跟斗,接著又翻了一次(猜4字成語)?
24.有一位刻字先生,他掛出來的價格表是這樣寫的刻「隸書」4角;刻「仿宋體」6角刻「你的名章」8角;刻「你愛人的名章」1.2元。那麼他刻字的單價是多少?
25.將100顆綠豆和100顆黃豆混在一起又一分為二,需要幾次才能使A堆中黃豆和B堆中的綠豆相等呢?
26.每隔1分鍾放1炮,10分鍾共放多少炮?
27.煙鬼甲每天抽50支煙,煙鬼乙每天抽10支煙。5年後,煙鬼乙抽的煙比煙鬼甲抽的還多,為什麼?
28.猴子每分鍾能掰一個玉米,在果園里,一隻猴子5分鍾能掰幾個玉米?
29.一個蘋果減去一個蘋果,猜一個字。
30.從一寫到一萬,你會用多少時間?

㈡ 誰有一些數學笑話或者趣味數學

統計學家

有個從未管過自己孩子的統計學家,在一個星期六下午妻子要外出買東西時,勉強答應照看一下4個年幼好動的孩子。當妻子回家時,他交給妻子一張紙條,上寫:

「擦眼淚11次;系鞋帶15次;給每個孩子吹玩具氣球各5次,每個氣球的平均壽命10秒鍾;警告孩子不要橫穿馬路26次;孩子堅持要穿過馬路26次;我還想再過這樣的星期六0次。」
http://myok.blogchina.com/4605953.html

數學笑話-比他多一點

爸爸:「這次數學考試,大明考了九十五分,小明,你考了多少分?」

小明:「我比大明多一點。」

爸爸:「你考了九十六分還是九十七分?」

小明:「都不是,我考了9.5分。」

(caihong提供)

無題

從前有個不學無術的富家子弟,有一次,父母出遠門去辦事,把他交給廚師照看,廚師問他:「我每天三餐每頓給你做兩個饅頭,夠嗎?」他哭喪著臉說:「不夠,不夠!」廚師又問:「那我就一天給你吃六個,怎麼樣?」他馬上欣喜地說:「夠了!夠了!」

(lalala提供)

無題

老師問學生:「6乘9等於多少?『

「54。」

「對了。9乘6呢?」

「45。」

「......」

(lalala提供)

時間

在一堂數學課上,老師問同學生們:"誰能出一道關於時間的問題?"話音剛落,有一個學生舉手站起來問:"老師,什麼時候放學?"

(lalala提供)

不識數

水果攤上貼著:大鴨梨4元1斤,10元3斤。

小明對媽媽說:「快買!這個賣梨的不識數,3斤應該是12元才對。

(caihong提供)

計算器

數學考試的考場上,同學們用計算器演算各種試題。這時突然從考場的一個角落裡傳來了一聲驚呼:「天哪,我怎麼把家裡的遙控器帶來了

㈢ 生活中有趣的數學現象

蜜蜂蜂房是嚴格的六角柱狀體,它的一端是平整的六角形開口,另一端是封閉的六角菱錐回形的底,由三個答相同的菱形組成。組成底盤的菱形的鈍角為109度28分,所有的銳角為70度32分,這樣既堅固又省料。蜂房的巢壁厚0.073毫米,誤差極小。

丹頂鶴總是成群結隊遷飛,而且排成「人」字形。「人」字形的角度是110度。更精確地計算還表明「人」字形夾角的一半——即每邊與鶴群前進方向的夾角為54度44分8秒!而金剛石結晶體的角度正好也是54度44分8秒!

冬天,貓睡覺時總是把身體抱成一個球形,這其間也有數學,因為球形使身體的表面積最小,從而散發的熱量也最少。

㈣ 數學家的故事與圖片

圖片:http://image..com/i?tn=image&ct=201326592&lm=-1&cl=2&word=華羅庚
華羅庚出生在一個擺雜貨店的家庭,從小體弱多病,但他憑借自己一股堅強的毅力和崇高的追求,終於成為一代數學宗師。
少年時期的華羅庚就特別愛好數學,但數學成績並不突出。19歲那年,一篇出色的文章驚動了當時著名的數學家熊慶來。從此在熊慶來先生的引導下,走上了研究數學的道路。晚年為了國家經濟建設,把純粹數學推廣應用到工農業生產中,為祖國建設事業奮斗終生! 華爺爺悉心栽培年輕一代,讓青年數學家茁壯成兒使他們脫穎而出,工作之餘還不忘給青多年朋友寫一些科普讀物。下面就是華羅庚爺爺曾經介紹給同學們的一個有趣的數學游戲: 有位老師,想辨別他的3個學生誰更聰明.他採用如下的方法:事先准備好3頂白帽子,2頂黑帽子,讓他們看到,然後,叫他們閉上眼睛,分別給戴上帽子,藏起剩下的2頂帽子,最後叫他們睜開眼,看著別人的帽子,說出自己所戴帽子的顏色。
3個學生互相看了看,都躊躇了一會,並異口同聲地說出自己戴的是白帽子。
聰明的小讀者,想想看,他們是怎麼知道帽子顏色的呢?「 為了解決上面的伺題,我們先考慮」2人1頂黑帽,2頂白帽」問題.因為,黑帽只有1頂,我戴了,對方立刻會說自己戴的是白帽.但他躊躇了一會,可見我戴的是白帽。這樣,「3人2頂黑帽,3頂白帽」的問題也就容易解決了.假設我戴的是黑帽子,則他們2人就變成「2人1頂黑帽,2頂白帽」問題,他們可以立刻回答出來,但他們都躊躇了一會,這就說明,我戴的是白帽子,3人經過同樣的思考,於是,都推出自己戴的是白帽子. 看到這里。同學們可能會拍手稱妙吧.後來,華爺爺還將原來的問題復雜化,「n個人,n-1頂黑帽子,若干(不少於n)頂白帽子」的問題怎樣解決呢?運用同樣的方法,便可迎刃而解.他並告誡我們:復雜的問題要善於「退」,足夠地「退」,「退」到最原始而不失去重要性的地方,是學好數學的一個訣竊。

㈤ 十大數學難題

1、幾何尺規作圖問題

這里所說的「幾何尺規作圖問題」是指做圖限制只能用直尺、圓規,而這里的直尺是指沒有刻度只能畫直線的尺。「幾何尺規作圖問題」包括以下四個問題

1.化圓為方-求作一正方形使其面積等於一已知圓;

2.三等分任意角;

3.倍立方-求作一立方體使其體積是一已知立方體的二倍。

4.做正十七邊形。

以上四個問題一直困擾數學家二千多年都不得其解,而實際上這前三大問題都已證明不可能用直尺圓規經有限步驟可解決的。第四個問題是高斯用代數的方法解決的,他也視此為生平得意之作,還交待要把正十七邊形刻在他的墓碑上,但後來他的墓碑上並沒有刻上十七邊形,而是十七角星,因為負責刻碑的雕刻家認為,正十七邊形和圓太像了,大家一定分辨不出來。

2、蜂窩猜想

四世紀古希臘數學家佩波斯提出,蜂窩的優美形狀,是自然界最有效勞動的代表。他猜想,人們所見到的、截面呈六邊形的蜂窩,是蜜蜂採用最少量的蜂蠟建造成的。他的這一猜想稱為蜂窩猜想,但這一猜想一直沒有人能證明。1943年,匈牙利數學家陶斯巧妙地證明,在所有首尾相連的正多邊形中,正多邊形的周長是最小的。1943年,匈牙利數學家陶斯巧妙地證明,在所有首尾相連的正多邊形中,正多邊形的周長是最小的。但如果多邊形的邊是曲線時,會發生什麼情況呢?陶斯認為,正六邊形與其他任何形狀的圖形相比,它的周長最小,但他不能證明這一點。而黑爾在考慮了周邊是曲線時,無論是曲線向外突,還是向內凹,都證明了由許多正六邊形組成的圖形周長最校他已將19頁的證明過程放在網際網路上,許多專家都已看到了這一證明,認為黑爾的證明是正確的。

3、孿生素數猜想

1849年,波林那克提出孿生素生猜想(the conjecture of twin primes),即猜測存在無窮多對孿生素數。孿生素數即相差2的一對素數。例如3和5 ,5和7,11和13,…,10016957和10016959等等都是孿生素數。1966年,中國數學家陳景潤在這方面得到最好的結果:存在無窮多個素數p,使p+2是不超過兩個素數之積。孿生素數猜想至今仍未解決,但一般人都認為是正確的。

4、費馬最後定理

在三百六十多年前的某一天,費馬突然心血來潮在書頁的空白處,寫下一個看起來很簡單的定理這個定理的內容是有關一個方程式 xn +yn = zn

的正整數解的問題,當n=2時就是我們所熟知的畢氏定理(中國古代又稱勾股弦定理)。

費馬聲稱當n>2時,就找不到滿足

xn +yn = zn

的整數解,例如:方程式

x3 +y3 = z3

就無法找到整數解。

始作俑者的費馬也因此留下了千古的難題,三百多年來無數的數學家嘗試要去解決這個難題卻都徒勞無功。這個號稱世紀難題的費馬最後定理也就成了數學界的心頭大患,極欲解之而後快。

不過這個三百多年的數學懸案終於解決了,這個數學難題是由英國的數學家威利斯(Andrew Wiles)所解決。其實威利斯是利用二十世紀過去三十年來抽象數學發展的結果加以證明。

5、四色猜想

1852年,畢業於倫敦大學的弗南西斯.格思里來到一家科研單位搞地圖著色工作時,發現了一種有趣的現象:「看來,每幅地圖都可以用四種顏色著色,使得有共同邊界的國家著上不同的顏色。」

1872年,英國當時最著名的數學家凱利正式向倫敦數學學會提出了這個問題,於是四色猜想成了世界數學界關注的問題。世界上許多一流的數學家都紛紛參加了四色猜想的大會戰。

1976年,美國數學家阿佩爾與哈肯在美國伊利諾斯大學的兩台不同的電子計算機上,用了1200個小時,作了100億判斷,終於完成了四色定理的證明。四色猜想的計算機證明,轟動了世界。

6、哥德巴赫猜想

公元1742年6月7日哥德巴赫(Goldbach)寫信給當時的大數學家歐拉(Euler),提出了以下的猜想:

(a) 任何一個>=6之偶數,都可以表示成兩個奇質數之和。

(b) 任何一個>=9之奇數,都可以表示成三個奇質數之和。

從此,這道著名的數學難題引起了世界上成千上萬數學家的注意。200年過去了,沒有人證明它。哥德巴赫猜想由此成為數學皇冠上一顆可望不可及的「明珠」。

㈥ 數學。。。

一.人人都能學好數學

數學對很多人來說是枯燥的、深奧的、抽象的,這是不爭的事實,但不等於說就是難學的。有位數學名人說過:「掌握數學,就是善於解題,但不完全在於解題的多少,還在於解題前的分析、探索和解題後的深思窮究。」也就是說,解數學題不是要把自己當成解題的機器、解題的奴隸,而應該努力成為解題的主人,是要從解題中吸取解題的方法、思想,鍛煉自己的思維,這就是所謂的「數學題要考查考生的能力」。那麼解題前後該如何「分析探索」與「深思窮究」呢?實際上,世間萬事萬物都是相通的,不知道同學們是否喜歡語文?要想寫一篇優秀的作文,必須審題、創意,要有寫作提綱,這種創意須是來源於自己的生活,是自己親身經歷、所感所想的,靠杜撰絕對寫不出好文章。那麼解決一道數學題,也必須審題,要弄清題目的已知是什麼?待求的是什麼?這叫「有的放矢」。「的」就是要打開「已知」與「待求」之間的通道,就是「創意」,就是要利用自己現有的數學知識、解題方法溝通這種聯系,或將問題化整為零、或將問題化為比較熟悉的問題。這種「創意」是一種長期數學思維的積淀,是自己解題經驗的總結,是解題之後的感悟。因此,解題之後的總結是最不容忽視的。記得從小學開始,語文老師總是要求我們在閱讀一篇文章之後說出它的中心思想,目的何在?我們做完一道數學題,也要想著總結它的中心思想:題目涉及到哪些知識點;解題中用到哪些解題方法或思想,以此與命題人「溝通」,才能達到「領悟」的境界。當然,解題後的總結,還應該考慮:問題是否可以有其它解法;是否可以進行推廣用來解決與之相似的問題。只有做到「舉一反三」,才能真得會「觸類旁通」。總之,做任何學問都不能貪大求全,而應精益求精。

二.注意改進學習習慣

1.知識掌握過程中的三種不良習慣

忽略理解,死記硬背:認為只要記住公式、定理就萬事大吉,而忽略了知識導出過程的理解,既造成提取應用知識的困難,更一次又一次地失去了對知識推導過程中孕含的思想方法的吸取。如三角公式「常記常忘,屢記不會」的根本原因就在於此,進而也談不上用三角變換解題的自覺性了。

注重結論,輕視過程:數學命題的特點是條件和結論之間緊密相聯的因果關系,不注意條件的掌握,常會導致錯誤的結果,甚至是正確的結果、錯誤的過程。如學習中看不出何時需討論、如何討論。原因之一在於數學知識的前提條件模糊(如指對數函數的單調性,不等式的性質,等比數列求和公式,最值定理等知識)

忽略及時復習和強化理解:「溫故而知新」這一淺顯的道理誰都懂,但在學習過程中持之以恆地應用者不多。由於在老師的精心誘導教誨下,每節課的內容好像都「懂」,因此也就捨不得花八至十分鍾的「寶貴」時間回顧當天的舊知。殊不知課上的「懂」是師生共同參與努力的結果,要想自己「會」,必須有一個「內化」的過程,而這個過程必須從課內延伸到課外。切記從「懂」到「會」必須有一個自身「領悟」的過程,這是誰也無法取締的過程。

2.解決問題過程中的四種不良心態

缺乏對已學習過的典型題目及典型方法的積累:部分同學做了大量的習題,但收效甚微,效果不佳。究其原因,是迫於壓力為完成任務而被動做題,缺乏必要的總結和積累。在積累的基礎上增強「題性」、「題感」,逐步形成「模塊」,不斷吸取其中的智育營養,方可感悟出隱藏於模式中的數學思想方法。這就是從量的積累到質的變化的過程,只有靠「積累—消化—吸收」才能「升華」。

在解決新問題時,缺乏探索精神:「學數學不做題目,等於入寶山而空返」(華羅庚語)。我們面對的社會,新的問題不斷出現,無處不在,信息時代尤為如此。學習數學,需要在解決問題的實踐中不斷探索。怕困難、過份依賴老師,久而久之便會形成不積極鑽研的習慣。我們在課堂教學中採用「先思後講,先做後評」的方法,正是為激發學習者的積極主動的探索熱情。希望同學們增強自信、勇於猜想、主動配合教師,使數學課堂教學成為學習者的思維活動的交流過程。

忽視解題過程的規范化,只追求答案:數學解題的過程是一個化歸與轉化的過程,當然離不開規范嚴謹的推理與判斷。解題中跳躍太大、亂寫字母、徒手作圖,如此態度對待稍難的問題,是難以產生正確答案的。我們說解題過程的規范不只是規范書寫,更主要是規范「思考方法」,同學們應該學會不斷調控自己的思維過程,力爭使解題盡善盡美。

不注重算理,忽視對運算途徑的選擇與實施:數學運算是按規則進行的,通用的規則和通行的方法當然要牢固掌握。但靜止的相對性和運動的絕對性又決定了數學解題中的通法不可能一成不變。因此,在運用通性、通法、通則解決問題時,不能忽視算理,更應注重對合理簡捷運算途徑的猜想、推斷與選擇,那種不假思索、順水推舟的做題方法必須改進。用「看」題或「想」題代替「做」題的學習方法,是引起運算能力差、導致運算繁冗的根本原因。

3.復習鞏固中的三種錯誤認識

認為多做題可以代替復習理解:學好數學,做大量的配套練習是必要的。但只練不想、不思、不總結,未必有好結果。只會埋頭做題,不會抬頭思考的同學,雖然做了大量的題目,以往所學的知識也難以保持隨機提取的狀態,只有靠滾動式的總結,才能使知識永遠「保態」,並且實現階段性知識層次的飛躍。我們平時復習中的練習,階段性的測試與月考,正是為了引導同學們多層次、全方位、多角度的復習理解,使知識連點成線構成網路。因此,善思考、勤總結是復習過程中必須的,也是知識和方法不斷積累的有效途徑。

不注意知識間的聯系和知識的系統性:高考數學科命題常在知識的交匯處考查學生綜合應用知識的能力。如果我們僅靠單一的知識掌握,缺乏對知識間的聯系與知識系統性的充分認識,必然會導致認識膚淺,綜合能力差,當然很難取得良好的成績。我們平時教學中的「前後兼顧」和「解題規律的總結」等均是為了強化知識間的聯系,望引起同學們足夠的重視。

不善於糾正已犯過的錯誤:糾正錯誤的過程就是學習進步的過程,人類社會也是在與錯誤作斗爭的過程中發展的。因此,善於糾錯,及時總結經驗教訓也是學習的重要環節。部分同學對老師批改的作業常停留在「√」和「×」上,甚至熟視無睹;對試卷只問得分的多少,而不關心或很少關心為什麼「錯」。須知:回憶,不管是甜、是苦,總是有益的、美好的,總能鼓勵自己更有信心地面向未來!改正錯誤的過程就是學習進步的過程。

總之,課前預習做好心理准備;課上腦、耳、手、口協調作戰,提高45分鍾的吸取效益;課後復習總結,充分思考與內化。相信通過同學們積極主動的學習,一定會成為數學的主人。

㈦ 數學題。。(圖片)

㈧ 數學 班徽設計圖CHAMP

班徽是班級的象徵,是一個班集體全部精神與內涵的濃縮。
整體背景:圓
我們班的班徽利用圓作整體的背景,圓是世界上最美好的圖形,它代表著一個統一的整體,也是和諧的符號,是班級凝聚力的象徵,更使大家對未來一個圓滿結局的渴望與寄託。
主體寓意:以人為本
班徽的主體是一個抽象的人,他在奔跑、在運動,它體現著努力進取、持之以恆的拼搏精神。他告訴我們:生命不息,奮斗不止;他指點我們:要獲得幸福,擁有輝煌,就要去耕耘去鑄造;它啟迪我們:愛拼才會贏!整個圖像以人為主,也體現了我們班公平民主的氛圍,更展示了我們班「要成材,先成人」的班訓。但換一個角度,便會發現,這不僅是個人,也是數字「15」,是初三(15)的標志。
班徽顏色:漸變色 紅 黃 藍
我們班的班徽採用漸變色,藍色屬於天空,那是和諧、是廣博;黃色歸於大地,那是謙遜、是平和;紅色之於火焰,那是熱情、是朝氣。紅黃藍三原色的過渡,完全的詮釋了初三(15)班的風采與氣度。
亮麗的色彩與有力的線條,是力量與柔美的結合,是激情與堅韌的碰撞,更是明日輝煌與往昔奮斗的映襯與交融。

㈨ 這個數學符號是什麼(叫什麼)有一百個懸賞分哦!!!

這個只是「定義新運算」符號,一般出現在奧數里,它不同於+-×÷,就是一個特定的運算
例如:定義運算x※y=A/3+y/4,已知4※y=4,那麼y等於多少?
(a)這道題規定:x※y=x/3+y/4,這是這道題人為這樣規定,
(b)我們按著它規定的這種算理來做4※y=4
(c)所以:4※x=4/3+y/4 正好等於4,這樣就有下面的方程:
4/3+y/4 =4
y/4=4-4/3
y/4=8/3
y=8/3×4
y=32/3

熱點內容
二年級上冊期末語文試卷 發布:2025-06-07 05:51:52 瀏覽:813
天天有喜片尾曲叫什麼 發布:2025-06-07 02:50:22 瀏覽:237
豬生物安全 發布:2025-06-07 02:36:35 瀏覽:27
小孩數學思維 發布:2025-06-07 02:15:50 瀏覽:66
沖刺100必備答案數學 發布:2025-06-07 00:34:36 瀏覽:845
語文的小游戲 發布:2025-06-07 00:21:42 瀏覽:734
面試英語怎麼說 發布:2025-06-07 00:11:58 瀏覽:525
禮物什麼 發布:2025-06-06 22:50:02 瀏覽:680
九年級上冊物理題 發布:2025-06-06 22:12:36 瀏覽:696
上海初中歷史 發布:2025-06-06 21:20:55 瀏覽:877