氣體放電物理
①玻璃放電管既可以用作電源電路的保護,也可以用作信號電路的保護;既可以用作共模保護,也可以用作差模保護。但只能用在浪涌電流不大於3kA的地方。
②直流擊穿電壓VS的選擇:直流擊穿電壓VS的最小值應大於可能出現的最高電源峰值電壓或最高信號電壓。
③在有可能出現續流的地方(如電源電路)使用時,必須串聯限流電阻或自恢復保險絲,防止玻璃放電管擊穿後長時間導通而損壞。
❷ 氣體放電的高頻放電
與微波放電
通常,如果放電管電極的電極性改變,放電的方向也改變。但這僅是在頻率很低的情況下才如此。如50赫市電點燃熒光燈時就是這樣。但當頻率提高時,放電來不及熄滅,因而呈現為穩定放電的形式:正輝柱位於兩電極中間,正輝柱兩邊均有法拉第暗區,然後是兩個負輝區緊鄰兩個電極。這就是高頻放電。高頻放電中,帶電粒子來回運動,損失的速度很慢,因此無需r過程也能維持放電,故可將電極移至管殼之外,僅藉助電場就可在管內引起放電。若將通有高頻電流的線圈套在管外,藉助交變電磁場的作用也能激起高頻放電。
頻率在幾百兆赫至幾百吉赫的高頻放電,屬於微波氣體放電。依據微波放電原理製成的天線開關管,廣泛應用在雷達工程中。高頻放電離子源,是核物理、等離子體化學的重要研究工具。微波放電線光譜輻射源、連續光譜輻射源等,應用於物理學、化學的研究工作中。在近代微電子技術中,利用高頻濺射的方法可避免靜電荷的影響。在可控核聚變研究中,微波放電可用作初始等離子體源,微波放電還可作為介質,用以研究波的傳播、轉化、吸收、等離子體穩定性、擴散、紊流等過程。
❸ 高中物理~課本上的思考討論,湯姆孫的氣體放電管測陰極射線速度的表達式,請問我的方法對嗎我在網上沒
我覺得沒有問題:
1、由同時加電場和磁場時不偏轉可知,電場力和洛倫茲力相等,解出入射速度v;
2、只有磁場時,洛倫茲力提供向心力。(洛倫茲力不做功速度的大小不會發生變化)由1求出的入射速度代入可以得到荷質比。
❹ 氣體放電的暗放電
暗放電主要是非自持放電(但自持放電的某些區域中有暗放電存在)。關於暗放電的理論是英國物理學家J.S.湯生於1903年提出的,故這種放電也稱為湯生放電。 湯生根據上述物理描述,推導出抵達陽極的電子數目nu為
式中n0為陰極發射的電子數;d為陰極陽極間距離;α為湯生第一電離系數。
上式表明,電子數目隨距離d指數增長。在一些光電器件中,特意充入一些惰性氣體,使光電陰極發射的電子在氣體中進行繁流,以得到光電流的放大,提高器件的靈敏度。 放電中產生的正離子最後都抵達陰極。正離子轟擊陰極表面時,使陰極產生電子發射;這種離子轟擊產生的次級電子發射,稱為r過程。r過程使放電出現新的特點,這就是:r過程產生的次級電子也能參加繁流。如果同一時間內,由於r過程產生的電子數,恰好等於飛抵陽極的電子數,放電就能自行維持而不依賴於外界電離源,這時就轉化為自持放電。
氣體的著火電壓取決於一系列因素。1889年,L.C.帕邢發現,對於平行平板電極系統,在其他條件相同時,著火電壓是氣體壓力p與電極距離d乘積的函數,通稱為巴邢定律。圖3表示一些氣體的著火電壓與pd值的關系。由圖可見,著火電壓有一最低值。在最低值右邊(右支),著火電壓隨pd的增大而提高,在其左邊(左支),則隨pd的減小而提高。在高電壓設備中,各電極間的距離須足夠大(即d值應足夠大),有時還充以高壓強(即取大的p值)的絕緣氣體,以提高設備的耐壓,就是利用右支的特性。反之,在真空電容器一類器件中,常將其內部抽至良好的真空(即達到小的p值),以提高其耐壓,這是利用左支的特性。
❺ 求氣體放電方面相關資料,原理、現象、形式、影響因素及伴隨的效應等。
乾燥氣體通常是良好的絕緣體,但當氣體中存在自由帶電粒子時,它就變為電的導體。這時如在氣體中安置兩個電極並加上電壓,氣體在強電場作用下,少量初始帶電粒子與氣體原子(或分子)相互碰撞,當碰撞能量足夠大時,會使束縛電子脫離氣體原子而成為自由電子。逸出電子後的原子成為正離子,使氣體中的帶電粒子增殖,這時有電流通過氣體,這個現象稱為氣體放電。
氣體放電有多種多樣的形式。主要的形式有輝光放電、電弧放電、電暈放電、火花放電、介質阻擋放電等。
輝光放電
低壓氣體中顯示輝光的氣體放電(空氣中的電子大概在1000對/cm3,由於高壓放電現象在低氣壓狀態下會產生輝光現象)現象,即是稀薄氣體中的自激導電現象。在置有板狀電極的玻璃管內充入低壓(約幾毫米汞柱)氣體或蒸氣,當兩極間電壓較高(約1000伏)時,稀薄氣體中的殘余正離子在電場中加速,有足夠的動能轟擊陰極,產生二次電子,經簇射過程產生更多的帶電粒子,使氣體導電。輝光放電的特徵是電流強度較小(約幾毫安),溫度不高,故電管內有特殊的亮區和暗區,呈現瑰麗的發光現象。
輝光放電時,在放電管兩極電場的作用下,電子和正離子分別向陽極、陰極運動,並堆積在兩極附近形成空間電荷區。因正離子的漂移速度遠小於電子,故正離子空間電荷區的電荷密度比電子空間電荷區大得多,使得整個極間電壓幾乎全部集中在陰極附近的狹窄區域內。這是輝光放電的顯著特徵,而且在正常輝光放電時,兩極間電壓不隨電流變化。
在陰極附近,二次電子發射產生的電子在較短距離內尚未得到足夠的能使氣體分子電離或激發的動能,所以緊接陰極的區域不發光。而在陰極輝區,電子已獲得足夠的能量碰撞氣體分子,使之電離或激發發光。其餘暗區和輝區的形成也主要取決於電子到達該區的動能以及氣體的壓強(電子與氣體分子的非彈性碰撞會失去動能)。
1.2.2電弧放電
兩個電極在一定電壓下由氣態帶電粒子,如電子或離子,維持導電的現象。激發試樣產生光譜。電弧放電主要發射原子譜線,是發射光譜分析常用的激發光源。通常分為直流電弧放電和交流電弧放電兩種。 氣體放電中最強烈的一種自持放電。當電源提供較大功率的電能時,若極間電壓不高(約幾十伏),兩極間氣體或金屬蒸氣中可持續通過較強的電流(幾安至幾十安),並發出強烈的光輝,產生高溫(幾千至上萬度),這就是電弧放電。電弧是一種常見的熱等離子體。 電弧放電最顯著的外觀特徵是明亮的弧光柱和電極斑點。電弧的重要特點是電流增大時,極間電壓下降,弧柱電位梯度也低,每厘米長電弧電壓降通常不過幾百伏,有時在1伏以下。弧柱的電流密度很高,每平方厘米可達幾千安,極斑上的電流密度更高。 電弧放電可分為 3個區域:陰極區、弧柱和陽極區。其導電的機理是:陰極依靠場致電子發射和熱電子發射效應發射電子;弧柱依靠其中粒子熱運動相互碰撞產生自由電子及正離子,呈現導電性,這種電離過程稱為熱電離;陽極起收集電子等作用,對電弧過程影響常較小。在弧柱中,與熱電離作用相反,電子與正離子會因復合而成為中性粒子或擴散到弧柱外,這一現象稱為去電離。在穩定電弧放電中,電離速度與去電離速度相同,形成電離平衡。此時弧柱中的平衡狀態可用薩哈公式描述。 能量平衡是描述電弧放電現象的又一重要定律。能量的產生是電弧的焦耳熱,能量的發散則通過輻射、對流和傳導三種途徑。改變散熱條件可使電弧參數改變,並影響放電的穩定性。 電弧通常可分為長弧和短弧兩類。長弧中弧柱起重要作用。短弧長度在幾毫米以下,陰極區和陽極區起主要作用。 根據電弧所處的介質不同又分為氣中電弧和真空電弧兩種。液體(油或水)中的電弧實際在氣泡中放電,也屬於氣中電弧。真空電弧實際是在稀薄的電極材料蒸氣中放電。這二種電弧的特性有較大差別。 電弧是一束高溫電離氣體, 在外力作用下, 如氣流,外界磁場甚至電弧本身產生的磁場作用下會迅速移動(每秒可達幾百米),拉長、捲曲形成十分復雜的形狀。電弧在電極上的孳生點也會快速移動或跳動。 在電力系統中,開關分斷電路時會出現電弧放電。由於電弧弧柱的電位梯度小,如大氣中幾百安以上電弧電位梯度只有15伏/厘米左右。在大氣中開關分斷100千伏5安電路時,電弧長度超過7米。電流再大,電弧長度可達30米。因此要求高壓開關能夠迅速地在很小的封閉容器內使電弧熄滅,為此,專門設計出各種各樣的滅弧室。滅弧室的基本類型有:①採用六氟化硫、真空和油等介質;②採用氣吹、磁吹等方式快速從電弧中導出能量;③迅速拉長電弧等。直流電弧要比交流電弧難以熄滅。1.2.3電暈放電
氣體介質在不均勻電場中的局部自持放電。最常見的一種氣體放電形式。在曲率半徑很小的尖端電極附近,由於局部電場強度超過氣體的電離場強,使氣體發生電離和激勵 ,因而出現電暈放電。發生電暈時在電極周圍可以看到光亮 ,並伴有噝噝聲。電暈放電可以是相對穩定的放電形式,也可以是不均勻電場間隙擊穿過程中的早期發展階段。 電暈放電的形成機制因尖端電極的極性不同而有區別,這主要是由於電暈放電時空間電荷的積累和分布狀況不同所造成的。在直流電壓作用下,負極性電暈或正極性電暈均在尖端電極附近聚集起空間電荷。在負極性電暈中,當電子引起碰撞電離後,電子被驅往遠離尖端電極的空間,並形成負離子,在靠近電極表面則聚集起正離子。電場繼續加強時 ,正離子被吸進電極,此時出現一脈沖電暈電流,負離子則擴散到間隙空間。此後又重復開始下一個電離及帶電粒子運動過程。如此循環,以致出現許多脈沖形式的電暈電流。電暈電流這一現象是 G.W. 特里切爾於1938年發現的 ,稱為特里切爾脈沖。若電壓繼續升高,電暈電流的脈沖頻率增加、幅值增大,轉變為負輝光放電。電壓再升高,出現負流注放電,因其形狀又稱羽狀放電或稱刷狀放電。當負流注放電得以繼續發展到對面電極時,即導致火花放電,使整個間隙擊穿 。正極性電暈在尖端電極附近也分布著正離子,但不斷被推斥向間隙空間,而電子則被吸進電極,同樣形成重復脈沖式電暈電流。電壓繼續升高時,出現流注放電,並可導致間隙擊穿。 工頻交流電暈在正、負半周內其放電過程與直流正、負電暈基本相同。工頻電暈電流與電壓同相,反映出電暈功率損耗。工程應用中還常以外施電壓與電暈電荷量的關系表示電暈特性,稱為電暈的伏庫特性。 架空輸電線路導線電暈起始電場強度Es可由皮克公式計算: (千伏/厘米) 式中δ為空氣相對密度,m為絞線系數,R為導線半徑(厘米)。當δ=1、m=0.5、R=0.9厘米時,Es=19.7千伏/厘米。實際上,導線表面狀況如損傷、雨滴、附著物等,都會使電暈放電易於發生。1.2.4火花放電
當高壓電源的功率不太大時,高電壓電極間的氣體被擊穿,出現閃光和爆裂聲的氣體放電現象。在通常氣壓下,當在曲率不太大的冷電極間加高電壓時,若電源供給的功率不太大,就會出現火花放電,火花放電時,碰撞電離並不發生在電極間的整個區域內,只是沿著狹窄曲折的發光通道進行,並伴隨爆裂聲。由於氣體擊穿後突然由絕緣變為良導體,電流猛增,而電源功率不夠,因此電壓下降,放電暫時熄滅,待電壓恢復再次放電。所以火花放電具有間隙性。雷電就是自然界中大規模的火花放電。
1.2.5介質阻擋放電
介質阻擋放電是有絕緣介質插入放電空間的一種非平衡態氣體放電又稱介質阻擋電暈放電或無聲放電。介質阻擋放電能夠在高氣壓和很寬的頻率范圍內工作,通常的工作氣壓為10~10。電源頻率可從50Hz至1MHz。電極結構的設計形式多種多樣。在兩個放電電極之間充滿某種工作氣體,並將其中一個或兩個電極用絕緣介質覆蓋,也可以將介質直接懸掛在放電空間或採用顆粒狀的介質填充其中,當兩電極間施加足夠高的交流電壓時,電極間的氣體會被擊穿而產生放電,即產生了介質阻擋放電。
氣體放電的影響因素:
1)所加電壓的幅值及波形,如直流電壓、交流電壓、脈沖電壓(模擬雷閃)等。
2)通過電流的大小,如計數管中的電流(微安級),沖擊大電流(兆安級)。 3)所加電壓的頻率,如直流電壓、工頻電壓等。
4)氣體的壓力,從10-4帕的真空直至幾兆帕的高氣壓。不同氣壓下,氣體擊穿的物理過程各異。
5)電極形狀,它決定電場的分布,眾而影響帶電粒子的運動。
6)容器與電極材料,高氣壓與高真空的氣體擊穿會受電極材料及表面狀態的影響。
7)氣體的性質,如負電性氣體可以提高氣體的擊穿電壓。依氣體壓力、施加電壓、電極形狀、電源頻率的不同。
❻ 物理學史。。。我看到資料上說1890年開始湯姆孫花了50年研究氣體放電現象!!!可是1913年波爾的的模型...
湯姆孫正是通過對氣體電傳導性的研究,測出了電子的荷質比,發現了電子。從1890年到1940年去世,湯姆孫專攻這一領域,取得了驚人的成就。後期他提拔了盧瑟福(玻爾和查克威克的導師)。就像普朗克一生研究熱力學一樣
❼ 氣體放電的輝光放電
簡介
低壓氣體在著火之後一般都產生輝光放電。若電極是安裝在玻璃管內,在氣體壓力約為 100帕且所加電壓適中時,放電就呈現出明暗相間的 8個區域(圖4)。圖中下方的曲線表示光強的分布,按從陰極到陽極的順序分為7個區。
①阿斯頓暗區:它是陰極前面的很薄的一層暗區,是F.W.阿斯頓於1968年在實驗中發現的。在本區中,電子剛剛離開陰極,飛行距離尚短,從電場得到的能量不足以激發氣體原子,因此沒有發光。
②陰極輝區:緊接於阿斯頓暗區,由於電子通過阿斯頓暗區後已具有足以激發原子的能量,在本區造成激發而形成的區域,當激發態原子恢復為基態時就發光。
③陰極暗區:又稱克魯克斯暗區。抵達本區域的電子,能量較高,有利於電離而不利於激發,因此發光微弱。
④負輝區:緊鄰陰極暗區,且與陰極暗區有明顯的分界。在分界線上發光最強,後逐漸變弱,並轉入暗區,即後述的法拉第暗區。負輝區中的電子能量較為分散,既富於低能量的電子也富於高能量的電子。
⑤法拉第暗區:負輝區到正柱區的過渡區域。在本區中,電子能量很低,不發生激發或電離,因此是暗區。
⑥正輝柱區:與法拉第暗區有明顯的邊界,是電子在法拉第暗區中受到加速,具備了激發和電離的能力後在本區中激發電離原子形成的,因發光明亮故又稱正輝柱。正輝柱區中電子、離子濃度很高(約1015~1016個/米3),且兩者的濃度相等,因此稱為等離子體。正柱區具有良好的導電性能;但它對放電的自持來說,不是必要的區域。在短的放電管中,正柱區甚至消失;在長的放電管中,它幾乎可以充滿整個管子。正柱區中軸向電場強度很小,因此遷移運動很弱,擴散運動(即亂向運動)占優勢。
⑦陽極輝區和陽極暗區:只有在陽極支取的電流大於等離子區能正常提供的電流時才出現。它們在放電中不是典型的區域。輝光放電各區域中最早被利用的是正柱區。正柱區的發光和長度可無限延伸的性質被利用於製作霓虹燈。作為指示用的氖管、數字顯示管,以及一些保護用的放電管,也是利用輝光放電。在氣體激光器中,毛細管放電的正柱區是獲得激光的基本條件。近代微電子技術中的等離子體塗覆、等離子體刻蝕,也是利用輝光放電過程。從正柱區的研究發展起來的等離子體物理,對核聚變、等離子體推進、電磁流體發電等尖端科學技術有重要意義。輝光放電中的負輝區,由於電子能量分布比正柱區的為寬,如今被成功地用於製作白光激光器。 輝光放電中,如果整個陰極已布滿輝光,再增大支取的電流,則出現異常輝光放電(圖1中 BE段)。此時陰極位降很大,且位降區的寬度減小。陰極位降大和電流密度大,會導致陰極材料的濺射。在放電器件中,濺射的吸氣作用降低器件內氣體壓強並改變其氣體成分,而濺射形成的導電膜則降低電極間絕緣。陰極濺射現象也可用作材料塗覆的一種手段,這就是濺射鍍膜。
❽ 求初中物理電學的一套詳細知識點 急!!!!!!!
電荷 電荷也叫電,是物質的一種屬性。
①電荷只有正、負兩種。與絲綢摩擦過的玻璃棒所帶電荷相同的電荷叫正電荷;而與毛皮摩擦過的橡膠棒所帶電荷相同的電荷叫負電荷。
②同種電荷互相排斥,異種電荷互相吸引。
③帶電體具有吸引輕小物體的性質
④電荷的多少稱為電量。
⑤驗電器:用來檢驗物體是否帶電的儀器,是依據同種電荷相互排斥的原理工作的。
2、導體和絕緣體 容易導電的物體叫導體,金屬、人體、大地、酸鹼鹽的水溶液等都是是常見的導體。不容易導電的物體叫絕緣體,橡膠、塑料、玻璃、陶瓷等是常見的絕緣體。
理解:導體和絕緣體的劃分並不是絕對的,當條件改變時絕緣體也能變成導體,例如在常溫下是很好的絕緣體的玻璃在高溫下就變成了導體。又如常態下,氣體中可以自由移動的帶電微粒(自由電子和正、負離子)極少,因此氣體是很好的絕緣體,但在很強的電場力作用下,或者當溫度升高到一定程度的時候,由於氣體的電離而產生氣體放電,這時氣體由絕緣體轉化為導體。所以,導體和絕緣體沒有絕對界限。在條件改變時,絕緣體和導體之間可以相互轉化。
3、電路 將用電器、電源、開關用導線連接起來的電流通路
電路的三種狀態:處處連通的電路叫通路也叫閉合電路,此時有電流通過;斷開的電路叫斷路也叫開路,此時電路中沒有電流;用導線把電源兩極直接連起來的電路叫短路。
4、電路連接方式 串聯電路、並聯電路是電路連接的基本方式。
理解:識別電路的基本方法是電流法,即當電流通過電路上各元件時不出現分流現象,這幾個元件的連接關系是串聯,若出現分流現象,則分別在幾個分流支路上的元件之間的連接關系是並聯。
5、電路圖 用符號表示電路連接情況的圖形。
十五、電流 電壓 電阻 歐姆定律
1、電流的產生:由於電荷的定向移動形成電流。
電流的方向:①正電荷定向移動的方向為電流的方向
理解:在金屬導體中形成的電流是帶電的自由電子的定向移動,因此金屬中的電流方向跟自由電子定向移動的方向相反。而在導電溶液中形成的電流是由帶正、負電荷的離子定向移動所形成的,因此導電溶液中的電流方向跟正離子定向移動的方向相同,而跟負離子定向移動的方向相反。
②電路中電流是從電源的正極出發,流經用電器、開關、導線等流回電源的負極的。
電流的三效應:熱效應、磁效應和化學效應,其中熱效應和磁效應必然發生。
2、電流強度:表示電流大小的物理量,簡稱電流。
①定義:每秒通過導體任一橫截面的電荷叫電流強度,簡稱電流。I=Q/t
②單位:安(A)常用單位有毫安(mA)微安(μA)
它們之間的換算:1A=103 mA=106μA
③測量:電流表
要測量某部分電路中的電流強度,必須把安培表串聯在這部分電路里。在把安培表串聯到電路里的時候,必須使電流從「+」接線柱流進安培表,並且從「-」接線柱流出來。
在測量前後先估算一下電流強度的大小,然後再將量程合適的安培表接入電路。在閉合電鍵時,先必須試著觸接電鍵,若安培表的指針急驟擺動並超過滿刻度,則必須換用更大量程的安培表。
使用安培表時,絕對不允許經過用電器而將安培表的兩個接線柱直接連在電源的兩極上,以防過大電流通過安培表將表燒壞。因為安培表的電阻很小,所以千萬不能把安培表並聯在用電器兩端或電源兩極上,否則將造成短路燒毀安培表。
讀數時,一定要先看清相應的量程及該量程的最小刻度值,再讀出指針所示數值。
3、串聯電路電流的特點:串聯電路中各處的電流相等。I=I1=I2
並聯電路電流的特點:並聯電路幹路中的電流等於各支路中的電流之和I=I1+I2
4、電壓是形成電流的原因,電源是提供電壓的裝置
5、①電壓的單位:伏特,簡稱伏,符號是V。
常用單位有:兆伏(MV)千伏(KV)毫伏(mV)微伏(μV)
它們之間的換算:1MV=103KV 1KV=103V 1V=103 mV 1mV=103μV
②一些常見電壓值:一節干電池 1.5伏 一節鉛蓄電池 2伏 人體的安全電壓 不高於36伏 照明電路的電壓 220伏 動力電路的電壓 380伏
③測量:電壓表
要測量某部分電路或用電器兩端電壓時,必須把伏特表跟這部分電路或用電器並聯,並且必須把伏特表的「+」接線柱接在電路流入電流的那端。
每個伏特表都有一定的測量范圍即量程,使用時必須注意所測的電壓不得超出伏特表的量程。如若被測的那部分電路或用電器的電壓數值估計的不夠准,可在閉合電鍵時採取試觸的方法,如果發現電壓表的指針很快地擺動並超出最大量程范圍,則必須選用更大量程的電壓表才能進行測量。在用伏特表測量電壓之前,先要仔細觀察所用的伏特表,看看它有幾個量程,各是多少,並弄清刻度盤上每一個格的數值。
6、串聯電路電壓的特點:串聯電路的總電壓等於各部分電壓之和。U=U1+U2
並聯電路電壓的特點:並聯電路各支路兩端的電壓相等。U=U1=U2
7、電阻:電阻是導體本身的一種性質,是表示導體對電流阻礙作用大小的物理量。與導體兩端的電壓及通過導體的電流都無關。
電阻的單位:歐姆,簡稱歐,代表符號Ω。
常用單位有:兆歐(MΩ) 千歐(KΩ) 它們的換算:1MΩ=106Ω 1KΩ=103Ω
8、決定電阻大小的因素:導體的電阻跟它的長度有關,跟橫截面積有關,跟組成導體的材料有關,還跟導體的溫度有關。
9、滑動變阻器:通過改變接入電路導線長度改變電阻值的儀器。
接法:一上一下 作用:改變電路中的電流
銘牌含義:「100Ω 2A」表示 最大阻值為100Ω 允許通過的最大電流為2A
注意點:滑動變阻器在接入電路時,應把滑片P移到變阻器電阻值最大的位置,從而限制電路中電流的大小,以保護電路。
10、變阻箱:通過改變接入電路定值電阻個數和阻值改變電阻大小的儀器。變阻箱有旋鈕式和插入式兩種。它們都是由一組阻值不同的電阻線裝配而成的。調節變阻箱上的旋鈕或拔出銅塞,可以不連續地改變電阻的大小,它可以直接讀出電阻的數值。
11、歐姆定律
內容:一段導體中的電流,跟這段導體兩端的電壓成正比,跟這段導體的電阻成反比。公式:I=U/R
12、電阻的串聯:串聯電路的總電阻,等於各串聯電阻之和。R總=R1+R2
13、電阻的並聯:並聯電路的總電阻的倒數,等於各並聯電阻的倒數之和。1/R總=1/R1+1/R2
14、串聯分壓,分壓與電阻成正比;並聯分流,分流與電阻成反比。
【方法介紹】
識別串聯電路與並聯電路的方法
(1)元件連接法 分析電路中電路元件的連接方法,逐個順次連接的是串聯電路,並列接在兩點間的是並聯電路。
(2)電流路徑法 從電源正極開始,沿電流的方向分析電流的路徑,直到電源的負極。如果只有一條迴路,則是串聯;如果電流路徑有若干條分支,則是並聯電路。
(3)元件消除法 若去掉電路中的某個元件時,出現開路的話則是串聯;若去掉電路中的某個元件後,其他元件仍能正常工作則是並聯。
十六、電功 電能 生活用電
1、電功:電流做的功叫電功。電流做功的過程是電能轉化為其它形式能的過程。
計算式:W=UIt=Pt=t=I2Rt=UQ(其中W=t=I2Rt只適用於純電阻電路)
單位:焦耳(J) 常用單位千瓦時(KWh) 1KWh=3.6×106J
測量:電能表(測家庭電路中用電器消耗電能多少的儀表)
接法:①串聯在家庭電路的幹路中②「1、3」進「2、4」出;「1、2」火「3、4」零
參數:「220V 10A(20A)」表示該電能表應該在220V的電路中使用;電能表的額定電流為10A,在短時間內電流不能超過20A;電路中用電器的總功率不能超過2200W;「50Hz」表示電能表應在交流電頻率為50Hz的電路中使用;「3000R/KWh」表示工作電路每消耗1KWh的電能,電能表的表盤轉動3000轉。
電能表間接測量電功率的計算式:P=×3.6×106(W)
2、電功率:電功率是電流在單位時間內做的功。等於電流與電壓的乘積。電功率的單位是瓦。計算式:P=W/t=UI==I2R(其中P==I2R只適用於純電阻電路)
3、額定功率與實際功率的區別與聯系:額定功率是由用電器本身所決定的,實際功率是由實際電路所決定的。聯系:P實=()2P額,可理解為用電器兩端的電壓變為原來的1/n時,功率就變為原來功率的1/n2。
4、小燈泡的明暗是由燈泡的實際功率決定的。
5、焦耳定律:電流通過導體產生的熱量Q跟電流I的平方成正比,跟導體的電阻R成正比,跟通電的時間t成正。計算式:Q=I2Rt=UIt=t(其中Q=UIt=t只適用於純電阻電路)
6、電熱器:主要部件是發熱體,是由電阻較大、熔點較高的材料製成的。其原理是電流的熱效應。
7、家庭電路:由電源線、電能表、開關、保險絲、用電器、插座等元件組成。
①家庭電路的進戶線相當於家庭電路的電源,由兩根線組成,一根是火線,一根是零線,火線與零線之間有220V的電壓。
②開關及保險絲必須與電路的火線相連。開關接在火線上,當拉開開關切斷電路時,電路上各部分都脫離了火線,這樣人體碰到這些部分就不會觸電,檢修電路也比較方便。能使整個電路更安全。
③電燈的開關應該接在火線和燈座(或燈頭)之間,利用測電筆可以檢查開關安裝是否正確。擰下燈泡,將開關閉合,把測電筆筆尖分別觸燈座兩接線柱,其中有一個氖管發光,再將開關斷開,再用測電筆分別觸兩接線柱,如果兩個都不發光,說明開關安裝正確;如果仍有一個發光,說明開關接在零線和燈座之間,應予以糾正。
④一般照明電路里使用的保險絲由電阻率比較大而熔點較低的鉛銻合金製成。在電路中的電流超過保險絲熔斷電流時,保險絲立即熔斷,使電路斷開,從而保護用電器,避免引起火災。
選用保險絲的原則,應該使用它的額定電流稍大於或等於電路的正常工作電流。
在照明電路中如果用銅絲代替保險絲,當電流超過額定電流時,銅絲不會熔斷,起不到保險的作用。
8、觸電:一定強度的電流通過人體時所引起的傷害事故。
9、安全用電常識:不接觸電壓高於36伏的帶電體,不靠近高壓帶電體。明插座的安裝應高於地面1.8m,電風扇、洗衣機等家用電器應接地
電學知識總結
一, 電路
電流的形成:電荷的定向移動形成電流.(任何電荷的定向移動都會形成電流).
電流的方向:從電源正極流向負極.
電源:能提供持續電流(或電壓)的裝置.
電源是把其他形式的能轉化為電能.如干電池是把化學能轉化為電能.發電機則由機械能轉化為電能.
有持續電流的條件:必須有電源和電路閉合.
導體:容易導電的物體叫導體.如:金屬,人體,大地,鹽水溶液等.
絕緣體:不容易導電的物體叫絕緣體.如:玻璃,陶瓷,塑料,油,純水等.
電路組成:由電源,導線,開關和用電器組成.
路有三種狀態:(1)通路:接通的電路叫通路;(2)開路:斷開的電路叫開路;(3)短路:直接把導線接在電源兩極上的電路叫短路.
電路圖:用符號表示電路連接的圖叫電路圖.
串聯:把元件逐個順序連接起來,叫串聯.(任意處斷開,電流都會消失)
並聯:把元件並列地連接起來,叫並聯.(各個支路是互不影響的)
二, 電流
國際單位:安培(A);常用:毫安(mA),微安( A),1安培=103毫安=106微安.
測量電流的儀表是:電流表,它的使用規則是:①電流表要串聯在電路中;②電流要從"+"接線柱入,從"-"接線柱出;③被測電流不要超過電流表的量程;④絕對不允許不經過用電器而把電流表連到電源的兩極上.
實驗室中常用的電流表有兩個量程:①0~0.6安,每小格表示的電流值是0.02安;②0~3安,每小格表示的電流值是0.1安.
三, 電壓
電壓(U):電壓是使電路中形成電流的原因,電源是提供電壓的裝置.
國際單位:伏特(V);常用:千伏(KV),毫伏(mV).1千伏=103伏=106毫伏.
測量電壓的儀表是:電壓表,使用規則:①電壓表要並聯在電路中;②電流要從"+"接線柱入,從"-"接線柱出;③被測電壓不要超過電壓表的量程;
實驗室常用電壓表有兩個量程:①0~3伏,每小格表示的電壓值是0.1伏;
②0~15伏,每小格表示的電壓值是0.5伏.
熟記的電壓值:①1節干電池的電壓1.5伏;②1節鉛蓄電池電壓是2伏;③家庭照明電壓為220伏;④安全電壓是:不高於36伏;⑤工業電壓380伏.
四, 電阻
電阻(R):表示導體對電流的阻礙作用.(導體如果對電流的阻礙作用越大,那麼電阻就越大,而通過導體的電流就越小).
國際單位:歐姆(Ω);常用:兆歐(MΩ),千歐(KΩ);1兆歐=103千歐;
1千歐=103歐.
決定電阻大小的因素:材料,長度,橫截面積和溫度(R與它的U和I無關).
滑動變阻器:
原理:改變電阻線在電路中的長度來改變電阻的.
作用:通過改變接入電路中的電阻來改變電路中的電流和電壓.
銘牌:如一個滑動變阻器標有"50Ω2A"表示的意義是:最大阻值是50Ω,允許通過的最大電流是2A.
正確使用:a,應串聯在電路中使用;b,接線要"一上一下";c,通電前應把阻值調至最大的地方.
五, 歐姆定律
歐姆定律:導體中的電流,跟導體兩端的電壓成正比,跟導體的電阻成反比.
公式: 式中單位:I→安(A);U→伏(V);R→歐(Ω).
公式的理解:①公式中的I,U和R必須是在同一段電路中;②I,U和R中已知任意的兩個量就可求另一個量;③計算時單位要統一.
歐姆定律的應用:
①同一電阻的阻值不變,與電流和電壓無關,其電流隨電壓增大而增大.(R=U/I)
②當電壓不變時,電阻越大,則通過的電流就越小.(I=U/R)
③當電流一定時,電阻越大,則電阻兩端的電壓就越大.(U=IR)
電阻的串聯有以下幾個特點:(指R1,R2串聯,串得越多,電阻越大)
①電流:I=I1=I2(串聯電路中各處的電流相等)
②電壓:U=U1+U2(總電壓等於各處電壓之和)
③ 電阻:R=R1+R2(總電阻等於各電阻之和)如果n個等值電阻串聯,則有R總=nR
④ 分壓作用:=;計算U1,U2,可用:;
⑤ 比例關系:電流:I1:I2=1:1 (Q是熱量)
電阻的並聯有以下幾個特點:(指R1,R2並聯,並得越多,電阻越小)
①電流:I=I1+I2(幹路電流等於各支路電流之和)
②電壓:U=U1=U2(幹路電壓等於各支路電壓)
③電阻:(總電阻的倒數等於各電阻的倒數和)如果n個等值電阻並聯,則有R總=R
⑤比例關系:電壓:U1:U2=1:1 ,(Q是熱量)
六, 電功和電功率
1. 電功(W):電能轉化成其他形式能的多少叫電功,
2.功的國際單位:焦耳.常用:度(千瓦時),1度=1千瓦時=3.6×106焦耳.
3.測量電功的工具:電能表
4.電功公式:W=Pt=UIt(式中單位W→焦(J);U→伏(V);I→安(A);t→秒).
利用W=UIt計算時注意:①式中的W.U.I和t是在同一段電路;②計算時單位要統一;③已知任意的三個量都可以求出第四個量.還有公式:=I2Rt
電功率(P):表示電流做功的快慢.國際單位:瓦特(W);常用:千瓦
公式:式中單位P→瓦(w);W→焦;t→秒;U→伏(V),I→安(A)
利用計算時單位要統一,①如果W用焦,t用秒,則P的單位是瓦;②如果W用千瓦時,t用小時,則P的單位是千瓦.
10.計算電功率還可用右公式:P=I2R和P=U2/R
11.額定電壓(U0):用電器正常工作的電壓.另有:額定電流
12.額定功率(P0):用電器在額定電壓下的功率.
13.實際電壓(U):實際加在用電器兩端的電壓.另有:實際電流
14.實際功率(P):用電器在實際電壓下的功率.
當U > U0時,則P > P0 ;燈很亮,易燒壞.
當U < U0時,則P < P0 ;燈很暗,
當U = U0時,則P = P0 ;正常發光.
15.同一個電阻,接在不同的電壓下使用,則有;如:當實際電壓是額定電壓的一半時,則實際功率就是額定功率的1/4.例"220V100W"如果接在110伏的電路中,則實際功率是25瓦.)
16.熱功率:導體的熱功率跟電流的二次方成正比,跟導體的電阻成正比.
17.P熱公式:P=I2Rt ,(式中單位P→瓦(W);I→安(A);R→歐(Ω);t→秒.)
18.當電流通過導體做的功(電功)全部用來產生熱量(電熱),則有:熱功率=電功率,可用電功率公式來計算熱功率.(如電熱器,電阻就是這樣的.)
七,生活用電
家庭電路由:進戶線(火線和零線)→電能表→總開關→保險盒→用電器.
所有家用電器和插座都是並聯的.而用電器要與它的開關串聯接火線.
保險絲:是用電阻率大,熔點低的鉛銻合金製成.它的作用是當電路中有過大的電流時,它升溫達到熔點而熔斷,自動切斷電路,起到保險的作用.
引起電路電流過大的兩個原因:一是電路發生短路;二是用電器總功率過大.
安全用電的原則是:①不接觸低壓帶電體;②不靠近高壓帶電體.
八,電和磁
磁性:物體吸引鐵,鎳,鈷等物質的性質.
磁體:具有磁性的物體叫磁體.它有指向性:指南北.
磁極:磁體上磁性最強的部分叫磁極.
任何磁體都有兩個磁極,一個是北極(N極);另一個是南極(S極)
磁極間的作用:同名磁極互相排斥,異名磁極互相吸引.
磁化:使原來沒有磁性的物體帶上磁性的過程.
磁體周圍存在著磁場,磁極間的相互作用就是通過磁場發生的.
磁場的基本性質:對入其中的磁體產生磁力的作用.
磁場的方向:小磁針靜止時北極所指的方向就是該點的磁場方向.
磁感線:描述磁場的強弱,方向的假想曲線.不存在且不相交,北出南進.
磁場中某點的磁場方向,磁感線方向,小磁針靜止時北極指的方向相同.
10.地磁的北極在地理位置的南極附近;而地磁的南極則在地理的北極附近.但並不重合,它們的交角稱磁偏角,我國學者沈括最早記述這一現象.
11.奧斯特實驗證明:通電導線周圍存在磁場.
12.安培定則:用右手握螺線管,讓四指彎向螺線管中電流方向,
則大拇指所指的那端就是螺線管的北極(N極).
13.通電螺線管的性質:①通過電流越大,磁性越強;②線圈匝數越多,磁性越強;③插入軟鐵芯,磁性大大增強;④通電螺線管的極性可用電流方向來改變.
14.電磁鐵:內部帶有鐵芯的螺線管就構成電磁鐵.
15.電磁鐵的特點:①磁性的有無可由電流的通斷來控制;②磁性的強弱可由改變電流大小和線圈的匝數來調節;③磁極可由電流方向來改變.
16.電磁繼電器:實質上是一個利用電磁鐵來控制的開關.它的作用可實現遠距離操作,利用低電壓,弱電流來控制高電壓,強電流.還可實現自動控制.
17.電話基本原理:振動→強弱變化電流→振動.
18.電磁感應:閉合電路的一部分導體在磁場中做切割磁感線運動時,導體中就產生電流,這種現象叫電磁感應,產生的電流叫感應電流.應用:發電機
感應電流的條件:①電路必須閉合;②只是電路的一部分導體在磁場中;③這部分導體做切割磁感線運動.
感應電流的方向:跟導體運動方向和磁感線方向有關.
發電機的原理:電磁感應現象.結構:定子和轉子.它將機械能轉化為電能.
磁場對電流的作用:通電導線在磁場中要受到磁力的作用.是由電能轉化為機械能.應用:電動機.
通電導體在磁場中受力方向:跟電流方向和磁感線方向有關.
電動機原理:是利用通電線圈在磁場里受力轉動的原理製成的.
換向器:實現交流電和直流電之間的互換.
交流電:周期性改變電流方向的電流.
直流電:電流方向不改變的電流.
實驗
一.伏安法測電阻
實驗原理:(實驗器材,電路圖如右圖)注意:實驗之前應把滑動變阻器調至阻值最大處
實驗中滑動變阻器的作用是改變被測電阻兩端的電壓.
二.測小燈泡的電功率——實驗原理:P=UI
❾ 湯姆生用氣體放電現象如何發現的電子
1 人們在封入稀薄空氣的玻璃管兩端,加上幾百伏以上的電壓,觀察到放電現象 2 到1855年德國玻璃工人蓋斯勒發明了水銀空氣泵,才創制出真空度較高的蓋斯勒發光管。1859年德國學者普留卡用蓋斯勒管做實驗時,發現在陽極方面的玻璃上出現了熒光,當時他猜想可能有一種神奇的東西從陽極發出來,打在管壁上。這種東西受磁場作用,路徑會發生彎曲。後來,他的學生希特洛夫在兩個電極中間放個小物體,發現蓋斯勒管放電時,在陽極方面的玻璃上呈現出這個物體的陰影。1876年科學界確認了這項發現,稱陰極發出的東西為「陰極射線」。
3 英國物理學家約翰·湯姆生經過大量實驗後,確認「陰極射線」是帶負電的,並測量出射線中粒子的荷質比。實驗表明,不論射線管中充以何種氣體,電極用哪種金屬材料製成,所得射線中粒子的荷質比都相同。由此湯姆生認為陰極射線中帶負電的粒子存在於任何元素之中,是一切物質中共有的粒子,並把這種粒子稱為「電子」。1909年美國物理學家密立根用油滴實驗,測得電子的電荷值為1.6×10-19庫侖,證實了湯姆生關於電子性質的預言。
❿ 大學物理實驗「氣體放電中等離子體的研究」實驗,如何寫實驗分析
認真看看實驗課本,這么多的內容怎麼說!