当前位置:首页 » 语数英语 » 初一数学上册练习题

初一数学上册练习题

发布时间: 2020-11-20 13:22:49

❶ 初一上册数学练习题

1、+2的相反数是_____,—2的绝对值是______,—0.5的倒数是______。
2、图1所示的几何体是由____个面组成的,面与面相交的线有____条,有____个顶点。
3、加拿大数学家约翰 菲尔兹正在看一本数学书,他从第a页看起,一直看到第n页(a<n),他看了_________页书。
4、据新华社北京10月6日电:国家林业局最新统计显示,我国的自然保护区总数已达1757个,覆盖国土总面积的13.2%,其中国家级自然保护区188个,总面积达到16.35亿亩。请你用科学记数法表示16.35亿亩=__________________亩。
5、从标有 、 、 、 的4张同样大小的卡片中,任意抽出两张,“抽出的两张是同类项”是_____________事件。
6、图2是某城市一月份1到10日的最低气温随时间变化的折线图,请根据图2提供的信息,在图3中补全条形统计图。

7、据美国科学家最新研究表明,吸烟能导致人的寿命减少,按天计算,平均每天吸一包烟可导致寿命减少2小时20分。如果一个人从n岁开始吸烟,每天一包,按平均寿命70岁来算(n<70),那么这个人的寿命将会减少___________(用含n的代数式表示)天。
8、如图4,两个长方形的一部分重叠在一起 (重叠部分也是一个长方形),则阴影部分的周长为(并化简结果)___________________ 。
9、如图5,七巧板中共有_______组平行线,点H到BD的距离是线段_______的长,用适当的方法表示图中的一个1350角是______。
10、开封十四中为了庆祝元旦,在学校大门上布置了一串小彩灯,彩灯按以下顺序不断闪动(如图6),其中数字表示小彩灯排列序号,英文字母R、G、B分别表示该灯为红、绿、蓝色,那么第426号到428号小彩灯的排列与色彩模式为(在右下方指定的框内画出)
二、用心选一选:
11、李阿姨买了25 000元某公司1年期的债券,1年后扣除20%的利息税之后得到本息和为26000元,这种债券的年利率是( )
A、4% B、5% C、6% D、8%
12、下列对0的说法中不正确的有( )个。
①0是最小的有理数 ②0的相反数是0 ③0是最小的正数
④0的绝对值是0 ⑤0是最小的正整数 ⑥0没有倒数
⑦0是最小的自然数 ⑧0不是代数式 ⑨0乘以任何数都等于0
⑩0既不是正数,也不是负数
A、3 B、4 C、5 D、6
13、如图7,∠AOC和∠BOD都是直角,如果∠AOB=1400,则∠DOC的度数是( )
A、300 B、400 C、500 D、600
14、有一种细菌,经过1分钟分裂成2个,再过1分钟,又发生了分裂,变成4个。把这样一个细菌放在瓶子里繁殖,直至瓶子被细菌充满为止,用了1小时,如果开始时,就在瓶子里放入这样的细菌2个,那么细菌充满瓶子所需要的时间为( )
A、半小时 B、45分钟 C、59分钟 D、1小时
15、把方程 去分母后,正确的结果是( )
A、 B、
C、 D、
16、有理数a、b在数轴上的对应点的位置如图8所示,则a、b、—a、 的大小关系正确的是( )
A、 B、
C、 D、
17、用小正方体搭一个几何体,使它的主视图和俯视图如图9所示,这样的几何体最少需要正方体( )个。
A、5 B、6 C、7 D、8
18、某粮店出售的三种品牌的面粉袋上分别标有质量为 、 、 的字样,从中任意拿出两袋,它们的质量最多相差( )kg
A、0.8 B、0.6 C、0.5 D、0.4
19、一只袋中有红球m个,白球7个,黑球n个,每个球除颜色外都相同,从中任取一个,取得白球的可能性与不是白球的可能性相同,那么m与n的关系是( )
A、 B、 C、 D、
表1
颜色 红 黄 蓝 白 紫 绿
花的朵数 1 2 3 4 5 6
20、把正方体的6个面分别涂上不同的颜色,并画上朵数不等的花,各面上的颜色与花的朵数情况如表:
现将上述大小相同,颜色、花朵分布完全一样的正方体拼成一个并排放置的长方体如图10,则长方体下底面共有花( )朵。
A、18 B、17 C、14 D、10

三、细心算一算:
21、计算下列各题:

22、解下列方程:
⑴ ⑵
23、先化简,后求值: ,其中x在数轴上的对应点到原点的距离为 个单位长度。
四、 耐心想一想:
日期 1号 2号 3号 4号 5号 6号 7号 8号
电表的示数 21 24 28 33 39 42 46 49
24、杨辉家喜迁新居并添置了一批新家用电器,为了了解用电量的大小,
表2
杨辉8月初连续每天早上查看电表的示数,并记录如表2。若每度电0.53元,请你估计杨辉家4月份的电费是多少元?

25、在图11的集合圈里,有6个有理数,请计算其中的正数的和与负数的积的差。

26、请你认真观察两架平衡的天平(如图12),并用所学过的数学知识求出梨和苹果的质量名是多少?

27、表3是12个“黄金周”国内旅游人数和实现旅游收入统计表。
时间 1999年“十一” 2000年“春节” 2000年“五一” 2000年“十一” 2001年“春节” 2001年“五一” 2001年“十一” 2002年“春节” 2002年“五一” 2002年“十一” 2003年“春节” 2003年“十一”
A 2800 2000 4600 5980 4496 7376 6397 5158 8710 8071 5947 8999
B 141 163 181 230 198 288 250 228 331 306 257 346
表3(其中A:国内旅游人数,单位为万人次;B:实现旅游收入,单位为亿元人民币)
⑴请画出国内旅游人数折线统计图;⑵12个黄金周国内旅游人数累计多少亿人次?⑶估计2003年“五一”黄金周的国内旅游人数和旅游收入(因受非典影响,2003年“五一”黄金周被迫取消),并说明理由。

五、决心试一试:
110米长的队伍,以每秒1.5米的速度行进,一队员以4米/秒的速度从队尾到队首,然后立即按原速返回到队尾,问队员从离开队尾到又返回队尾时,队伍行进了多少米?试将上述问题改编成一个求队伍长度的问题,并做解答。

❷ 七年级上册数学练习题

七年级上册数学有理数精选练习题

第一章典型试题练习
1.1正数和负数
1、下列说法正确的是( )
A、零是正数不是负数 B、零既不是正数也不是负数
C、零既是正数也是负数 D、不是正数的数一定是负数,不是负数的数一定是正数
2、向东行进-30米表示的意义是( )
A、向东行进30米 B、向东行进-30米
C、向西行进30米 D、向西行进-30米
3、某种药品的说明书上标明保存温度是(20±2)℃,由此可知在__℃~__℃范围内保存才合适。
4、某老师把某一小组五名同学的成绩简记为:+10,-5,0,+8,-3,又知道记为0的成绩表示90分,正数表示超过90分,则五名同学的平均成绩为多少分?
1.2.1有理数分类
1、下列说法正确的是( )
A、正数、0、负数统称为有理数 B、分数和整数统称为有理数
C、正有理数、负有理数统称为有理数 D、以上都不对
2、-a一定是( )
A、正数 B、负数 C、正数或负数 D、正数或零或负数
3、下列说法中,错误的有( )
①是负分数;②1.5不是整数;③非负有理数不包括0;④整数和分数统称为有理数;⑤0是最小的有理数;⑥-1是最小的负整数。
A、1个 B、2个 C、3个 D、4个
4、把下列各数分别填入相应的大括号内:
自然数集合{ …};
整数集合{ …};
正分数集合{ …};
非正数集合{ …};
有理数集合{ …};
5、简答题:
(1)-1和0之间还有负数吗?如有,请列举。
(2)-3和-1之间有负整数吗?-2和2之间有哪些整数?
(3)有比-1大的负整数吗?有比1小的正整数吗?
(4)写出三个大于-105小于-100的有理数。
1.2.2
1、数轴上与原点距离是5的点有___个,表示的数是___。
2、已知x是整数,并且-3<x<4,那么在数轴上表示x的所有可能的数值有______。
3、在数轴上,点A、B分别表示-5和2,则线段AB的长度是___。
4、数轴上的点A表示-3,将点A先向右移动7个单位长度,再向左移动5个单位长度,那么终点到原点的距离是___.
1.2.3相反数
1、-(-3)的相反数是___。
2、已知数轴上A、B表示的数互为相反数,并且两点间的距离是6,点A在点B的左边,则点A、B表示的数分别是___。
3、已知a与b互为相反数,b与c互为相反数,且c=-6,则a=___。
4、一个数a的相反数是非负数,那么这个数a与0的大小关系是a___0.
5、数轴上A点表示-3,B、C两点表示的数互为相反数,且点B到点A的距离是2,则点C表示的数应该是___。
6、下列结论正确的有( )
①任何数都不等于它的相反数;②符号相反的数互为相反数;③表示互为相反数的两个数的点到原点的距离相等;④若有理数a,b互为相反数,那么a+b=0;⑤若有理数a,b互为相反数,则它们一定异号。
A 、2个 B、3个 C、4个 D、5个
7、如果a=-a,那么表示a的点在数轴上的什么位置?
1.2.4绝对值
1、化简:
___;___;___。
2、比较下列各对数的大小:
-(-1)___-(+2);___; ___; ___-(-2)。
3、①若,则a与0的大小关系是a___0;
②若,则a与0的大小关系是a___0。
4、下列结论中,正确的有( )
①符号相反且绝对值相等的数互为相反数;②一个数的绝对值越大,表示它的点在数轴上离原点越远;③两个负数,绝对值大的它本身反而小;④正数大于一切负数;⑤在数轴上,右边的数总大于左边的数。
A、2个 B、3个 C、4个 D、5个
5、在数轴上点A在原点的左侧,点A表示有理数a,求点A到原点的距离。
6、求有理数a和的绝对值。
1.3.1有理数加法
1、(1)绝对值小于4的所有整数的和是________;
(2)绝对值大于2且小于5的所有负整数的和是________。
2、若,则________。
3、已知且a>b>c,求a+b+c的值。
4、若1<a<3,求的值。
5、10袋大米,以每袋50千克为准:超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:+0.5,+0.3,0,-0.2,-0.3,+1.1,-0.7,-0.2,+0.6,+0.7.
10袋大米共超重或不足多少千克?总重量是多少千克?
1.3有理数的加减法
1、下列各式可以写成a-b+c的是( )
A、a-(+b)-(+c) B、a-(+b)-(-c) C、a+(-b)+(-c) D、a+(-b)-(+c)
2、计算:
(1) (2)
(3)
3、若则________。
4、若x<0,则等于( )
A、-x B、0 C、2x D、-2x
5、下列结论不正确的是( )
A、若a>0,b<0,则a-b>0 B、若a<0,b>0,则a-b<0
C、若a<0,b<0,则a-(-b)>0 D、若a<0,b<0,且,则a-b>0.
6、红星队在4场足球赛中的成绩是:第一场3:1胜,第二场2:3负,第三场0:0平,第四场2:5负。红星队在4场比赛中总的净胜球数是多少?
1.4.1有理数的乘法
1、的倒数的相反数是___。
2、已知两个有理数a,b,如果ab<0,且a+b<0,那么( )
A、a>0,b>0 B、a<0,b>0 C、a,b异号 D、a,b异号,且负数的绝对值较大
3、计算:
(1) (2)
(3); (4)
6、已知求的值。
7、若a,b互为相反数,c,d互为倒数,m的绝对值是1,求的值。
1.4.2有理数的除法
1、计算:
(1);(6).
2、如果(的商是负数,那么( )
A、异号 B、同为正数 C、同为负数 D、同号

❸ 人教版初一数学上册第一章练习题

第一章 有理数
【课标要求】
考点
知识点
知识与技能目标

了解
理解
掌握
灵活应用
【知识梳理】
1.数轴:数轴三要素:原点,正方向和单位长度;数轴上的点与实数是一一对应的。
2.相反数实数a的相反数是-a;若a与b互为相反数,则有a+b=0,反之亦然;几何意义:在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。
3.倒数:若两个数的积等于1,则这两个数互为倒数。
4.绝对值:代数意义:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0;
几何意义:一个数的绝对值,就是在数轴上表示这个数的点到原点的距离.
5.科学记数法: ,其中。
6.实数大小的比较:利用法则比较大小;利用数轴比较大小。
7.在实数范围内,加、减、乘、除、乘方运算都可以进行,但开方运算不一定能行,如负数不能开偶次方。实数的运算基础是有理数运算,有理数的一切运算性质和运算律都适用于实数运算。正确的确定运算结果的符号和灵活的使用运算律是掌握好实数运算的关键。

【能力训练】

一、选择题。
1. 下列说法正确的个数是 ( )
①一个有理数不是整数就是分数 ②一个有理数不是正数就是负数
③一个整数不是正的,就是负的 ④一个分数不是正的,就是负的
A 1 B 2 C 3 D 4
2. 下列说法正确的是 ( )
①0是绝对值最小的有理数 ②相反数大于本身的数是负数
③数轴上原点两侧的数互为相反数 ④两个数比较,绝对值大的反而小
A ①② B ①③ C ①②③ D ①②③④
3.下列运算正确的是 ( )
A -5/7+2/7=-(5/7+2/7)=-1 B -7-2×5=-9×5=-45
C 3÷5/4×4/5=3/1=3 D -(-3)2=-9
4.若a+b<0,ab<0,则 ( )
A a>0,b>0 B a<0,b<0
C a,b两数一正一负,且正数的绝对值大于负数的绝对值
D a,b两数一正一负,且负数的绝对值大于正数的绝对值
5.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg, (25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差 ( )
A 0.8kg B 0.6kg C 0.5kg D 0.4kg
6.一根1m长的小棒,第一次截去它的,第二次截去剩下的,如此截下去,第五次后剩下的小棒的长度是 ( )
A ()5m B [1-()5]m C ()5m D [1-()5]m
7.若ab≠0,则的取值不可能是 ( )
A 0 B 1 C 2 D -2
二、填空题。
8.比大而比小的所有整数的和为( )。
9.若那么2a一定是( )。
10.若0<a<1,则a,a2,的大小关系是 ( ).
11.多伦多与北京的时间差为 –12 小时(正数表示同一时刻比北京时间早的时数),如果北京时间是10月1日14:00,那么多伦多时间是 。
12上海浦东磁悬浮铁路全长30km,单程运行时间约为8min,那么磁悬浮列车的平均速度用科学记数法表示约为 ( ) m/min。
13.规定a*b=5a+2b-1,则(-4)*6的值为 ( ).
14.已知=3,=2,且ab<0,则a-b=( )。
15.已知a=25,b= -3,则a99+b100的末位数字是( )。
三、计算题。
16. -2-12× (1/3-1/4+1/2)
17. 8-2×32-(-2×3)2
18. 3/2×5/7-(-5/7)×5/2+(-1/2)÷7/5
四、解答题。
23. 已知1+2+3+…+31+32+33==17×33,求1-3+2-6+3-9+4-12+…+31-93+32-96+33-99的值。
24.在数1,2,3,…,50前添“+”或“-”,并求它们的和,所得结果的最小非负数是多少?请列出算式解答。
25.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下。(单位:km)
第一次 -4
第二次 +7
第三次 -9
第四次 +8
第五次 +6
第六次 -5
第七次 -2
(1) 求收工时距A地多远?

(2) 在第 次纪录时距A地最远。

(3) 若每km耗油0.3升,问共耗油多少升?

参考答案:

一、选择题:1-7:BADDBCB

二、填空题:

8.-3; 9.非正数; 10.; 11.2:00; 12.3.625×106; 13.-9; 14.5或-5; 15.6

三、计算题16.-9; 17.-45; 18.;

四、解答题:23.-2×17×33; 24.0; 25.(1)1(2)五(3)12.3.

❹ 初一上数学应用题练习

甲、乙两汽车,甲从A地去B地,乙从B地去A地,同时相向而行,1小时30分两车相遇;相遇后甲车还需2小时到达B地,乙车还需 小时到达A地,若A、B两地相距210千米,则甲、乙两车的速度为V甲=____________,V乙=____________.

6.甲对乙说:我现在若是你现在的年龄,你那时的年龄是我现在年龄的一半;当你到我现在年龄时,那时咱俩年龄的和为63岁.则甲现在年龄是____________岁,乙现在是____________岁.

7.a是一个两位数,b是一个一位数,如果把它们组成一个三位数,使三位数的最高位数字是b,则表示这个三位数的代数式是____________.
二、选择题(每题3分,共24分)

5.某工厂考核工人,一共10项任务;在规定时间内若完成一项给10分,完成一项的一半给5分,若某项完全不会做,倒扣2分.若该工人考核后得78分,则他得10分,5分和不会做的项数依次为( )

(A)6,4,1 (B)7,2,1 (C)8,1,2 (D)以上都不对

6.用浓度为30%和60%的两种食盐水,混合配制成浓度为40%的食盐水100克.问需用这两种浓度的食盐水各多少克?设需要浓度为30%的食盐水x克,需用浓度为60%的食盐水y克,依题意可列方程组为( )

7.已知:x,y互为相反数,且(x+y+4)(x-y)=4,则x,y的值分别为( )

(A) (B) (C) (D)

8.已知方程组 的解为正数,则a的取值范围是( )

(A)a<4 (B)a<6 (C)4<a<6 (D)不存在

四、列方程组解应用题(1~7题每题5分,第8题3分,共38分)

1.现有五年期和三年期国债,甲购五年期100元,三年期200元,平均获年利10%,乙购五年期300元,三年期150元,平均获年利11%.求五年期和三年期债券的年利率分别是多少?

2.某人骑自行车从A地先以每小时12千米的速度下坡后,以每小时9千米的速度走平路到B地,共用55分钟.回来时,他以每小时8千米的速度通过平路后,以每小时4千米的速度上坡,从B地到A地共用1 小时,求A,B两地的距离.

3.有两个矩形,第一个矩形的长、宽和第二个矩形的长、宽顺次成比5∶4∶3∶2,第一个矩形的周长比第二个矩形的周长长72cm,求这两个矩形的面积.

4.某水库有流入量一定的水不断流进来.按现在的放水量,水库中的水可使用80天,但近时因日照关系流入量减少20%.按现时放水量放水,只能使用60天,问现在的流入量和放水量分别是多少?

5.甲、乙两人从相距28千米的两地同时相向而行,3小时30分相遇;如乙先走2小时后甲出发,这样甲经过2小时45分就和乙相遇,求甲、乙两人的速度各是多少?

6.一个工人接到加工一批零件的任务,限期完成,他计算每小时做10个,就可以超过任务3个,每小时做11个,就可提前1小时完成,他加工的零件是多少个?限期是多少小时?

7.三个同学买文具,甲买了四支铅笔、一把尺子和十个练习本,共付了1.69元.乙买了三支铅笔、一把尺子和七个练习本,共付了1.26元.丙买了一支铅笔、一把尺子、一个练习本,要付多少钱?

8.某商场计划拨款9万元从厂家购进50台电视机,已知该厂生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.

(1)若商场同时购进两种不同型号的电视机50台,用去9万元,请你研究一下商场的进货方案.

(2)若商场销售一台甲、乙、丙电视机分别可获利150元、200元、250元.请你确定在以上同时购进两种不同型号电视机的方案中,为使商场获利最多,应选择哪种进货方案?

(3)若商场准备用9万元同时购进三种不同型号电视机50台,请你设计方案.

❺ 初一数学上册计算题1000道

[-18]+29+[-52]+60= 19

[-3]+[-2]+[-1]+0+1+2= -3

[-301]+125+301+[-75]= 50

[-1]+[-1/2]+3/4+[-1/4]= -1

[-7/2]+5/6+[-0.5]+4/5+19/6= 1.25

[-26.54]+[-6.14]+18.54+6.14= -8

1.125+[-17/5]+[-1/8]+[-0.6]= -3

[-98+76+(-87)]*23[56+(-75)-(7)]-(8+4+3)
5+21*8/2-6-59
68/21-8-11*8+61
-2/9-7/9-56
4.6-(-3/4+1.6-4-3/4)
1/2+3+5/6-7/12
[2/3-4-1/4*(-0.4)]/1/3+2
22+(-4)+(-2)+4*3
-2*8-8*1/2+8/1/8
(2/3+1/2)/(-1/12)*(-12)
(-28)/(-6+4)+(-1)
2/(-2)+0/7-(-8)*(-2)
(1/4-5/6+1/3+2/3)/1/2
18-6/(-3)*(-2)
(5+3/8*8/30/(-2)-3
(-84)/2*(-3)/(-6)
1/2*(-4/15)/2/3
-3x+2y-5x-7y 1、我国研制的“曙光3000超级服务器”,它的峰值计算速度达到403,200,000,000次/秒,用科学计数法可表示为 ( )
A. 4032×108 B. 403.2×109 C. 4.032×1011 D. 0.4032×1012
2、下面四个图形每个都由六个相同的小正方形组成,折叠后能围成正方体的是 ( )

3、下列各组数中,相等的一组是 ( )
A.-1和- 4+(-3) B. |-3|和-(-3) C. 3x2-2x=x D. 2x+3x=5x2
4.巴黎与北京的时差是-7(正数表示同一时刻比北京早的时数),若北京时间是7月2日14:00
时整,则巴黎时间是 ( )
A.7月2日21时 B.7月2日7时 C.7月1日7时 D.7月2日5时
5、国家规定存款利息的纳税办法是:利息税=利息×20%,银行一年定期的利率为2.25%,今小
磊取出一年到期的本金及利息时,交纳了4.5元利息税,则小磊一年前存入银行的钱为 A. 1000元 B. 900元 C. 800元 D. 700元 ( )
6、某种品牌的彩电降价30%后,每台售价为a元,则该品牌彩电每台售价为 ( )
A. 0.7a 元 B. 0.3a元 C. 元 D. 元
7、两条相交直线所成的角中 ( )
A.必有一个钝角 B.必有一个锐角 C.必有一个不是钝角 D.必有两个锐角
8、为了让人们感受丢弃塑料袋对环境造成的影响,某班环保小组的六名同学记录了自己家中一周内丢弃的塑料袋的数量,结果如下(单位:个):33 25 28 26 25 31.如果该班有45名学生,根据提供的数据估计本周全班同学各家总共丢弃塑料袋的数量约为 ( )
A.900个 B.1080个 C.1260个 D.1800个
9、若关于x的方程3x+5=m与x-2m=5有相同的解,则x的值是 ( )
A. 3 B. –3 C. –4 D. 4
10、已知:│m + 3│+3(n-2)2=0,则m n值是 ( )
A. –6 B.8 C. –9 D. 9
11. 下面说法正确的是 ( )
A. 过直线外一点可作无数条直线与已知直线平行 B. 过一点可作无数条直线与已知直线垂直
C. 过两点有且只有二条直线 D. 两点之间,线段最短.
12、正方体的截面中,边数最多的多边形是 ( )
A.四边形 B.五边形 C.六边形 D. 七边形
二、 填空题
13、用计算器求4×(0.2-3)+(-2)4时,按键的顺序是
14、计算51°36ˊ=________°
15、张大伯从报社以每份0.4元的价格购进了a份报纸,以每份0.5元的价格售出了b份报纸,剩余的以每份0.2元的价格退回报社,则张大伯的卖报收入是___________.
16、 已知:如图,线段AB=3.8㎝,AC=1.4㎝,D为CB的中点,
A C D B 则DB= ㎝
17、设长方体的面数为f, 棱数为v,顶点数为e,则f + v + e =___________.
18.用黑白两种颜色的正六边形地面砖按如下所示的规律拼成若干个图案:
则第(4)个图案中有白色地面砖________块;第n
(1) (2) (3) 个图案中有白色地面砖_________块.
19. 一个袋中有白球5个,黄球4个,红球1个(每个球除颜色外其余都相同),摸到__________球的机会最小
20、一次买10斤鸡蛋打八折比打九折少花2元钱,则这10斤鸡蛋的原价是________元.
21、你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条,如下面的草图所示:

……

第一次捏合后 第二次捏合后 第三次捏合后
这样捏合到第 次后可拉出128根细面条。
22、若x=1时,代数式ax3+bx+1的值为5,则x=- 1时,代数式ax3+bx+1的值等于
三、 解答题
23.计算① 36×( - )2 ②∣ (-2)3×0.5∣-(-1.6)2÷(-2)2

③ 14(abc-2a)+3(6a-2abc) ④ 9x+6x2-3(x- x2),其中x=-2

24.解方程① - = 1 ② (x+1)=2- (x+2)

③ { [ ( x+5)-4]+3}=2 ④ - =-1.6

25. 在左下图的9个方格中分别填入-6,-5,-4,-1,0,1,4,5,6使得每行、每列、斜对角的三个数的和均相等.

26. 在一直线上有A、B、C三点, AB=4cm,BC=0.5AB,点O是线段AC的中点,求线段OB的长度.

27某校学生列队以8千米/ 时的速度前进,在队尾,校长让一名学生跑步到队伍的最前面找带队老师传达一个指示,然后立即返回队尾,这位学生的速度是12千米/时,从队尾出发赶到排头又回队尾共用了3.6分钟,求学生队伍的长.

28某班全体同学在“献爱心”活动中都捐了图书,捐书情况如下表:
每人捐书的册数 5 10 15 20
相应的捐书人数 17 22 4 2
根据题目中所给的条件回答下列问题:
(1)该班的学生共 多少名; (2)全班一共捐了 册图书;
(3)将上面的数据成制作适当的统计图。

29.星星果汁店中的A种果汁比B种果汁贵1元,小彬和同学要了3 杯B种果汁、2杯A种果汁,一共花了16元。A种果汁、B种果汁的单价分别是多少元?

30.“中商”近日推出“买200元送80元”的酬宾活动,现有一顾客购买了200元的服装,得到80元的购物赠券(可在商场通用,但不能换钱),当这名顾客在购买这套服装时,一售货员对顾客说:“酬宾活动中购买商品比较便宜,相当于打6折,即 100%=60%.”他的说法对吗?

31.某材料供应商对顾客实行如下优惠办法:一次购买金额不超过1万元,不予优惠;一次购买超
过1万元,但不超过3万元,给予9折优惠;一次购买超过3万元的,其中3万元9折优惠,超
过3万元的部分8折优惠。某厂因库容原因,第一次在该供应商处购买材料付款7800元,第二次
购买付款26100元,如果他是一次购买同样数量的材料,可少付金额多少元?

一、填空题(每小题3分,共24分)
1.(-1)2002-(-1)2003=_________________.
答案:2
2.已知某数的 比它大 ,若设某数为x,则可列方程_______________.
答案: x=x+
3.如图1,点A、B、C、D在直线l上.则BC=_________-CD,AB+________+CD=AD;若AB=BC=CD,则AB=________BD.

图1
答案:BD,BC,
4.若∠α=41°32′,则它的余角是____________,它的补角是__________.
答案:48°28′,138°28′
5.如图2,求下列各角:∠1=___________,∠2=___________,∠3=___________.

图2
答案:62.5°,25°,130°
6.两条直线相交,有_____________个交点;三条直线两两相交最多有_____________个交点,最少有_____________个交点.
答案:且只有一,三,一
7.38°12′=_____________°,67.5°=__________°___________′.
答案:38.2,67,30
8.如果 x2-3x=1是关于x的一元一次方程,则a=_________________.
答案:
二、选择题:(每小题3分,共24分)
9.下列说法中,正确的是
A.|a|不是负数 B.-a是负数
C.-(-a)一定是正数 D. 不是整数
答案:A.
10.平面上有任意三点,经过其中两点画一条直线,共可以画
A.一条直线 B.二条直线 C.三条直线 D.一条或三条直线
答案:D.
11.下列画图语句中,正确的是
A.画射线OP=3 cm B.连结A、B两点
C.画出A、B两点的中点 D.画出A、B两点的距离
答案:B.
12.下列图形中能折成正方体的有

图3
A.1个 B.2个 C.3个 D.4个
答案:D.
13.下列图形是,是左边图形绕直线l旋转一周后得到的是

图4
答案:D.
14.图5是某村农作物统计图,其中水稻所占的比例是

图5
A.40% B.72% C.48% D.52%
答案:C.
15.下列说法,正确的是
①所有的直角都相等 ②所有的余角都相等 ③等角的补角相等 ④相等的角是直角.其中正确的是
A.①② B.①③ C.②③ D.③④
答案:B.
16.若|x- |+(2y+1)2=0,则x2+ y2的值是
A. B.
C.- D.-
答案:B.
三、解答下列各题
17.计算题(每小题3分,共12分)
(1)(- )×(-1 )÷(-1 ) (2)32÷(-2)3+(-2)3×(- )-22
(3)( - )÷( - )2÷(-6)2-(- )2
(4)1 ×〔3×(- )2-1〕- 〔(-2)2-(4.5)÷3〕
答案:(1)-1 (2)-2 (3)- (4)-
18.解方程:(每小题5分,共10分)
(1) 〔 ( x- )-8〕= x+1
(2) - - =0
答案:(1)x=- (2)x=-
19.(6分)如图6,已知AOB为直线,OC平分∠AOD,∠BOD=50°,求∠AOC的度数.

图6
答案:65°
20.(6分)一个角的余角的3倍比这个角的补角大18°,求这个角的度数.
答案:36°
21.(6分)制作适当的统计图表示下表数据:
1949年以后我国历次人口普查情况
年份 1953 1964 1982 1990 2000
人口(亿) 5.94 6.95 10.08 11.34 12.95
答案:可制作条形统计图 (略).
22.(12分)一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过18 s,已知客车与货车的速度之比是5∶3,问两车每秒各行驶多少米?
解:设客车的速度是5x,则货车速度为3x.根据题意,得
18(5x+3x)=200+280.
解得x= ,即客车的速度是 m/s.货车的速度是10 m/s75÷〔138÷(100-54)〕 85×(95-1440÷24)
80400-(4300+870÷15) 240×78÷(154-115)
1437×27+27×563 〔75-(12+18)〕÷15
2160÷〔(83-79)×18〕 280+840÷24×5
325÷13×(266-250) 85×(95-1440÷24)
58870÷(105+20×2) 1437×27+27×563
81432÷(13×52+78) [37.85-(7.85+6.4)] ×30
156×[(17.7-7.2)÷3] (947-599)+76×64
36×(913-276÷23) [192-(54+38)]×67
[(7.1-5.6)×0.9-1.15]÷2.5 81432÷(13×52+78)
5.4÷[2.6×(3.7-2.9)+0.62] (947-599)+76×64 60-(9.5+28.9)]÷0.18 2.881÷0.43-0.24×3.5 20×[(2.44-1.8)÷0.4+0.15] 28-(3.4 1.25×2.4) 0.8×〔15.5-(3.21 5.79)〕 (31.8 3.2×4)÷5 194-64.8÷1.8×0.9 36.72÷4.25×9.9 3.416÷(0.016×35) 0.8×[(10-6.76)÷1.2]
(136+64)×(65-345÷23) (6.8-6.8×0.55)÷8.5
0.12× 4.8÷0.12×4.8 (58+37)÷(64-9×5)
812-700÷(9+31×11) (3.2×1.5+2.5)÷1.6
85+14×(14+208÷26) 120-36×4÷18+35
(284+16)×(512-8208÷18) 9.72×1.6-18.305÷7

4/7÷[1/3×(3/5-3/10)] (4/5+1/4)÷7/3+7/10
12.78-0÷( 13.4+156.6 ) 37.812-700÷(9+31×11) (136+64)×(65-345÷23) 3.2×(1.5+2.5)÷1.6
85+14×(14+208÷26) (58+37)÷(64-9×5)
(6.8-6.8×0.55)÷8.5 (284+16)×(512-8208÷18)
0.12× 4.8÷0.12×4.8 (3.2×1.5+2.5)÷1.6
120-36×4÷18+35 10.15-10.75×0.4-5.7
5.8×(3.87-0.13)+4.2×3.74 347+45×2-4160÷52
32.52-(6+9.728÷3.2)×2.5 87(58+37)÷(64-9×5)
[(7.1-5.6)×0.9-1.15] ÷2.5 (3.2×1.5+2.5)÷1.6
5.4÷[2.6×(3.7-2.9)+0.62] 12×6÷(12-7.2)-6
3.2×6+(1.5+2.5)÷1.6 (3.2×1.5+2.5)÷1.6
5.8×(3.87-0.13)+4.2×3.74
33.02-(148.4-90.85)÷2.5
1)23+(-73)
(2)(-84)+(-49)
(3)7+(-2.04)
(4)4.23+(-7.57)
(5)(-7/3)+(-7/6)
(6)9/4+(-3/2)
(7)3.75+(2.25)+5/4
(8)-3.75+(+5/4)+(-1.5)
(9)(-17/4)+(-10/3)+(+13/3)+(11/3)
(10)(-1.8)+(+0.2)+(-1.7)+(0.1)+(+1.8)+(+1.4)
(11)(+1.3)-(+17/7)
(12)(-2)-(+2/3)
(13)|(-7.2)-(-6.3)+(1.1)|
(14)|(-5/4)-(-3/4)|-|1-5/4-|-3/4|)
(15)(-2/199)*(-7/6-3/2+8/3)
(16)4a)*(-3b)*(5c)*1/6
1. 3/7 × 49/9 - 4/3
2. 8/9 × 15/36 + 1/27
3. 12× 5/6 – 2/9 ×3
4. 8× 5/4 + 1/4
5. 6÷ 3/8 – 3/8 ÷6
6. 4/7 × 5/9 + 3/7 × 5/9
7. 5/2 -( 3/2 + 4/5 )
8. 7/8 + ( 1/8 + 1/9 )
9. 9 × 5/6 + 5/6
10. 3/4 × 8/9 - 1/3

0.12χ+1.8×0.9=7.2 (9-5χ)×0.3=1.02 6.4χ-χ=28+4.4

11. 7 × 5/49 + 3/14
12. 6 ×( 1/2 + 2/3 )
13. 8 × 4/5 + 8 × 11/5
14. 31 × 5/6 – 5/6
15. 9/7 - ( 2/7 – 10/21 )
16. 5/9 × 18 – 14 × 2/7
17. 4/5 × 25/16 + 2/3 × 3/4
18. 14 × 8/7 – 5/6 × 12/15
19. 17/32 – 3/4 × 9/24
20. 3 × 2/9 + 1/3
21. 5/7 × 3/25 + 3/7
22. 3/14 ×× 2/3 + 1/6
23. 1/5 × 2/3 + 5/6
24. 9/22 + 1/11 ÷ 1/2
25. 5/3 × 11/5 + 4/3
26. 45 × 2/3 + 1/3 × 15
27. 7/19 + 12/19 × 5/6
28. 1/4 + 3/4 ÷ 2/3
29. 8/7 × 21/16 + 1/2
30. 101 × 1/5 – 1/5 × 21
31.50+160÷40 (58+370)÷(64-45)
32.120-144÷18+35
33.347+45×2-4160÷52
34(58+37)÷(64-9×5)
35.95÷(64-45)
36.178-145÷5×6+42 420+580-64×21÷28
37.812-700÷(9+31×11) (136+64)×(65-345÷23)
38.85+14×(14+208÷26)
39.(284+16)×(512-8208÷18)
40.120-36×4÷18+35
41.(58+37)÷(64-9×5)
42.(6.8-6.8×0.55)÷8.5
43.0.12× 4.8÷0.12×4.8
44.(3.2×1.5+2.5)÷1.6 (2)3.2×(1.5+2.5)÷1.6
45.6-1.6÷4= 5.38+7.85-5.37=
46.7.2÷0.8-1.2×5= 6-1.19×3-0.43=
47.6.5×(4.8-1.2×4)= 0.68×1.9+0.32×1.9
48.10.15-10.75×0.4-5.7
49.5.8×(3.87-0.13)+4.2×3.74
50.32.52-(6+9.728÷3.2)×2.5

51.-5+58+13+90+78-(-56)+50
52.-7*2-57/(3
53.(-7)*2/(1/3)+79/(3+6/4)
54.123+456+789+98/(-4)
55.369/33-(-54-31/15.5)
56.39+{3x[42/2x(3x8)]}
57.9x8x7/5x(4+6)
58.11x22/(4+12/2)
59.94+(-60)/10

1.
a^3-2b^3+ab(2a-b)
=a^3+2a^2b-2b^3-ab^2
=a^2(a+2b)-b^2(2b+a)
=(a+2b)(a^2-b^2)
=(a+2b)(a+b)(a-b)

2.
(x^2+y^2)^2-4y(x^2+y^2)+4y^2
=(x^2+y^2-2y)^2

3.
(x^2+2x)^2+3(x^2+2x)+x^2+2x+3
=(x^2+2x)^2+4(x^2+2x)+3
=(x^2+2x+3)(x^2+2x+1)
=(x^2+2x+3)(x+1)^2

4.
(a+1)(a+2)+(2a+1)(a-2)-12
=a^2+3a+2+2a^2-3a-2-12
=3a^2-12
=3(a+2)(a-2)

5.
x^2(y+z)^2-2xy(x-z)(y+z)+y^2(x-z)^2
=[x(y+z)-y(x-z)]^2
=(xz+yz)^2
=z^2(x+y)^2

6.
3(a+2)^2+28(a+2)-20
=[3(a+2)-2][(a+2)+10]
=(3a+4)(a+12)

7.
(a+b)^2-(b-c)^2+a^2-c^2
=(a+b)^2-c^2+a^2-(b-c)^2
=(a+b+c)(a+b-c)+(a+b-c)(a-b+c)
=(a+b-c)(a+b+c+a-b+c)
=2(a+b-c)(a+c)

8.
x(x+1)(x^2+x-1)-2
=(x^2+x)(x^2+x-1)-2
=(x^2+x)^2-(x^2+x)-2
=(x^2+x-2)(x^2+x+1)
=(x+2)(x-1)(x^2+x+1)
1. 3/7 × 49/9 - 4/3
2. 8/9 × 15/36 + 1/27
3. 12× 5/6 – 2/9 ×3
4. 8× 5/4 + 1/4
5. 6÷ 3/8 – 3/8 ÷6
6. 4/7 × 5/9 + 3/7 × 5/9
7. 5/2 -( 3/2 + 4/5 )
8. 7/8 + ( 1/8 + 1/9 )
9. 9 × 5/6 + 5/6
10. 3/4 × 8/9 - 1/3

0.12χ+1.8×0.9=7.2 (9-5χ)×0.3=1.02 6.4χ-χ=28+4.4

11. 7 × 5/49 + 3/14
12. 6 ×( 1/2 + 2/3 )
13. 8 × 4/5 + 8 × 11/5
14. 31 × 5/6 – 5/6
15. 9/7 - ( 2/7 – 10/21 )
16. 5/9 × 18 – 14 × 2/7
17. 4/5 × 25/16 + 2/3 × 3/4
18. 14 × 8/7 – 5/6 × 12/15
19. 17/32 – 3/4 × 9/24
20. 3 × 2/9 + 1/3
21. 5/7 × 3/25 + 3/7
22. 3/14 ×× 2/3 + 1/6
23. 1/5 × 2/3 + 5/6
24. 9/22 + 1/11 ÷ 1/2
25. 5/3 × 11/5 + 4/3
26. 45 × 2/3 + 1/3 × 15
27. 7/19 + 12/19 × 5/6
28. 1/4 + 3/4 ÷ 2/3
29. 8/7 × 21/16 + 1/2
30. 101 × 1/5 – 1/5 × 21
31.50+160÷40 (58+370)÷(64-45)
32.120-144÷18+35
33.347+45×2-4160÷52
34(58+37)÷(64-9×5)
35.95÷(64-45)
36.178-145÷5×6+42 420+580-64×21÷28
37.812-700÷(9+31×11) (136+64)×(65-345÷23)
38.85+14×(14+208÷26)
39.(284+16)×(512-8208÷18)
40.120-36×4÷18+35
41.(58+37)÷(64-9×5)
42.(6.8-6.8×0.55)÷8.5
43.0.12× 4.8÷0.12×4.8
44.(3.2×1.5+2.5)÷1.6 (2)3.2×(1.5+2.5)÷1.6
45.6-1.6÷4= 5.38+7.85-5.37=
46.7.2÷0.8-1.2×5= 6-1.19×3-0.43=
47.6.5×(4.8-1.2×4)= 0.68×1.9+0.32×1.9
48.10.15-10.75×0.4-5.7
49.5.8×(3.87-0.13)+4.2×3.74
50.32.52-(6+9.728÷3.2)×2.5

51.-5+58+13+90+78-(-56)+50
52.-7*2-57/(3
53.(-7)*2/(1/3)+79/(3+6/4)
54.123+456+789+98/(-4)
55.369/33-(-54-31/15.5)
56.39+{3x[42/2x(3x8)]}
57.9x8x7/5x(4+6)
58.11x22/(4+12/2)
59.94+(-60)/10

1.
a^3-2b^3+ab(2a-b)
=a^3+2a^2b-2b^3-ab^2
=a^2(a+2b)-b^2(2b+a)
=(a+2b)(a^2-b^2)
=(a+2b)(a+b)(a-b)

2.
(x^2+y^2)^2-4y(x^2+y^2)+4y^2
=(x^2+y^2-2y)^2

3.
(x^2+2x)^2+3(x^2+2x)+x^2+2x+3
=(x^2+2x)^2+4(x^2+2x)+3
=(x^2+2x+3)(x^2+2x+1)
=(x^2+2x+3)(x+1)^2

4.
(a+1)(a+2)+(2a+1)(a-2)-12
=a^2+3a+2+2a^2-3a-2-12
=3a^2-12
=3(a+2)(a-2)

5.
x^2(y+z)^2-2xy(x-z)(y+z)+y^2(x-z)^2
=[x(y+z)-y(x-z)]^2
=(xz+yz)^2
=z^2(x+y)^2

6.
3(a+2)^2+28(a+2)-20
=[3(a+2)-2][(a+2)+10]
=(3a+4)(a+12)

7.
(a+b)^2-(b-c)^2+a^2-c^2
=(a+b)^2-c^2+a^2-(b-c)^2
=(a+b+c)(a+b-c)+(a+b-c)(a-b+c)
=(a+b-c)(a+b+c+a-b+c)
=2(a+b-c)(a+c)

8.
x(x+1)(x^2+x-1)-2
=(x^2+x)(x^2+x-1)-2
=(x^2+x)^2-(x^2+x)-2
=(x^2+x-2)(x^2+x+1)
=(x+2)(x-1)(x^2+x+1) 1、奥运会会场里5排2号可以用(5,2)表示,则(7,4)表示 。毛

2、81的算术平方根是______,=________.

3、不等式-4x≥-12的正整数解为 .

4、要使有意义,则x的取值范围是_______________。

5、在△ABC中,已知两条边a=3,b=4,则第三边c的取值范围是_________.

6、等腰三角形一边等于5,另一边等于8,则周长是_________ .

7、如图所示,请你添加一个条件使得AD‖BC, 。

8、若一个数的立方根就是它本身,则这个数是 。

9、点P(-2,1)向上平移2个单位后的点的坐标为 。

10.观察下列等式, =2,=3, =4,请你写出含有n(n>2的自然数)的等式表示上述各式规律的一般化公式: .

二.同学们我是福娃晶晶上面欢欢的题答的怎么样了?我可遇到难题了,老师给我出了一些选择题,我没达到老师的要求,没能收集到会标,全靠你们了(共20枚每题两枚)。

11、奥运会需要一种多边形形状的瓷砖用来铺设无缝地板,购买的瓷砖形状不可能是( )

A、等边三角形; B、正方形; C、正八边形; D、正六边形

12、有下列说法:

(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;

(3)无理数包括正无理数、零、负无理数;(4)无理数都可以用数轴上的点来表示。其中正确的说法的个数是( )

A.1 B.2 C.3 D.4

13、在,,-,,3.14,2+,- ,0,,1.262662666…中,属于无理数的个数是( )

A.3个 B. 4个 C. 5个 D.6个

14.已知a<b,则下列式子正确的是( )

A.a+5>b+5­ B.3a>3b; C.-5a>-5b­ D.>

15. 设“●”“▲”“■”表示三种不同的物体,现用天平称了两次,情况如图2所示,那么●、▲、■这三种物体按质量从大到小的顺序排列为( )

A. ■●▲ B. ■▲● C. ▲●■ D. ▲■●

16、若不等式组的解集为-1≤x≤3,则图中表示正确的是( )

17、已知点M(3a-9,1-a)在第三象限,且它的坐标都是整数,则a=( )

A.1 B.2 C.3 D.O

18、北京将举办一次奥运会纪念集邮展览,展出的邮票若每人3张,则多24张,若每人4张,则少26张,则展出邮票张数是:( )

A、174 B、178 C、168 D、164

19、为迎接奥运保护生态环境,我省某县响应国家“退耕还林”号召,将某一部分耕地改为林地,改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,为求改变后林地面积和耕地面积各多少平方千米。设改变后耕地面积x平方千米,林地地面积y平方千米,根据题意,列出如下四个方程组,其中正确的是()

A B C D

20、一次奥运知识竞赛中,有20道选择题.评分标准是:对1题给5分,错1题扣2分,不答题不给分也不扣分.福娃晶晶有两道题未答.至少答对几道题,总分才不会低于60分.则晶晶至少答对的题数是( )

A.7道 B.8题 C.9题 D.10题

三、福娃贝贝气喘嘘嘘得跑过来对大家说:“快点,奥委会招记分员和算分员呢,我们去看看吧。”到那一看原来他们是有条件的,得答对下面的题,你能行吗?(共20枚,每题5枚)

(21)

(22)解不等式2x-1<4x+13,将解集在数轴上表示:

(23)

(24).

25、迎迎拿来奥运场馆建设中的一张图纸,已知:在△ABC中,AD,AE分别是 △ABC的高和角平分线,若∠B=30°, ∠C=50°.你能帮助工人师傅解决下面的问题吗?

(1) 求∠DAE的度数。(5枚)

(2) 试写出 ∠DAE与∠C-∠B有何关系?(不必证明)(3枚)

26、福娃迎迎准备买一只小猫和一只小狗玩具,商店老板没有告诉迎迎玩具的价格,而是给了她下面的信息,来和迎迎一起算算每只小猫和小狗的价格吧!(8枚)

一共要70元;

一共要50元。

27、北京奥组委准备从甲、乙两家公司中选择一家公司,制作一批奥运纪念册,甲公司提出:收设计费与加工费共1500元,另外每册收取材料费5元:乙公司提出:每册收取材料费与加工费共8元,不收设计费.设制作纪念册的册数为x,甲公司的收费(元),乙公司的收费(元)。

(1)请你写出用制作纪念册的册数x表示甲公司的收费(元)的关系式;(3枚)

(2)请你写出用制作纪念册的册数x表示乙公司的收费(元)的关系式;(3枚)

(3)如果你去甲、乙两公司订做纪念册,你认为选择哪家公司价格优惠? 请写出分析理由.(6枚)

28、最后由五个福娃带我们去参观国家体育馆“鸟巢”,贵宾门票是每位30元,20人以上(含20人)的团体票8折优惠,我们一行共有18人(包括福娃),当领队欢欢准备好零钱到售票处买18张票时,爱动脑筋的晶晶喊住了欢欢,提议买20张票,欢欢不明白,明明我们只有18人,买20张票岂不是“浪费”吗?

(1)请你算算,晶晶的提议对不对?是不是真的“浪费”呢?(4枚)

(2)当人数少于20人时,至少要有多少人去“鸟巢”,买20张票反而合算呢?(8枚)

❻ 初一上册数学练习题

1.如果向东运动5m记作+5m,那么向西运动3m应记作 m。
2.既不是正数,也不是负数的数是 。
3.―(―3)的相反数是 ;―1的倒数是 。
4.如果a<0,则 |a|= 。
5.单项式- 的系数是 ,次数是 。
6.若|a+3|+(b-2)2 = 0,则a-b = 。
7.如图1:AB<AC+BC,其理由是 。
8.69°30′的余角等于 。
9.0.02079保留三个有效数字约为 。
10.单项式- x2my与 x6yn的和是一个单项式,则m = ,n = 。
11.把多项式a4+4a3b-6ab2+4ab3按b的降幂排列为 。
12.把一根木条钉在墙上,至少要钉 个钉子,根据 。
13.按科学记数法,把15800000写成 。
14.如图2:∠1=∠2,则 ‖ ,∠BAD+ =180°。

❼ 初一数学上册练习题

【能力训练】

一、选择题。
1. 下列说法正确的个数是 ( )
①一个有理数不是整数就是分数 ②一个有理数不是正数就是负数
③一个整数不是正的,就是负的 ④一个分数不是正的,就是负的
A 1 B 2 C 3 D 4
2. 下列说法正确的是 ( )
①0是绝对值最小的有理数 ②相反数大于本身的数是负数
③数轴上原点两侧的数互为相反数 ④两个数比较,绝对值大的反而小
A ①② B ①③ C ①②③ D ①②③④
3.下列运算正确的是 ( )
A -5/7+2/7=-(5/7+2/7)=-1 B -7-2×5=-9×5=-45
C 3÷5/4×4/5=3/1=3 D -(-3)2=-9
4.若a+b<0,ab<0,则 ( )
A a>0,b>0 B a<0,b<0
C a,b两数一正一负,且正数的绝对值大于负数的绝对值
D a,b两数一正一负,且负数的绝对值大于正数的绝对值
5.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg,(25±0.2)kg, (25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差 ( )
A 0.8kg B 0.6kg C 0.5kg D 0.4kg
6.一根1m长的小棒,第一次截去它的,第二次截去剩下的,如此截下去,第五次后剩下的小棒的长度是 ( )
A ()5m B [1-()5]m C ()5m D [1-()5]m
7.若ab≠0,则的取值不可能是 ( )
A 0 B 1 C 2 D -2
二、填空题。
8.比大而比小的所有整数的和为( )。
9.若那么2a一定是( )。
10.若0<a<1,则a,a2,的大小关系是 ( ).
11.多伦多与北京的时间差为 –12 小时(正数表示同一时刻比北京时间早的时数),如果北京时间是10月1日14:00,那么多伦多时间是 。
12上海浦东磁悬浮铁路全长30km,单程运行时间约为8min,那么磁悬浮列车的平均速度用科学记数法表示约为 ( ) m/min。
13.规定a*b=5a+2b-1,则(-4)*6的值为 ( ).
14.已知=3,=2,且ab<0,则a-b=( )。
15.已知a=25,b= -3,则a99+b100的末位数字是( )。
三、计算题。
16. -2-12× (1/3-1/4+1/2)
17. 8-2×32-(-2×3)2
18. 3/2×5/7-(-5/7)×5/2+(-1/2)÷7/5
四、解答题。
23. 已知1+2+3+…+31+32+33==17×33,求1-3+2-6+3-9+4-12+…+31-93+32-96+33-99的值。
24.在数1,2,3,…,50前添“+”或“-”,并求它们的和,所得结果的最小非负数是多少?请列出算式解答。
25.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一天中七次行驶纪录如下。(单位:km)
第一次 -4
第二次 +7
第三次 -9
第四次 +8
第五次 +6
第六次 -5
第七次 -2
(1) 求收工时距A地多远?

(2) 在第 次纪录时距A地最远。

(3) 若每km耗油0.3升,问共耗油多少升?

参考答案:

一、选择题:1-7:BADDBCB

二、填空题:

8.-3; 9.非正数; 10.; 11.2:00; 12.3.625×106; 13.-9; 14.5或-5; 15.6

三、计算题16.-9; 17.-45; 18.;

四、解答题:23.-2×17×33; 24.0; 25.(1)1(2)五(3)12.3.

热点内容
漫画题师德 发布:2025-07-09 23:54:29 浏览:211
使某人做某事的英语 发布:2025-07-09 23:36:43 浏览:82
视频直播哪个好 发布:2025-07-09 22:55:16 浏览:851
生物科幻 发布:2025-07-09 22:20:43 浏览:133
英语在线翻译中文 发布:2025-07-09 20:39:43 浏览:738
历史课前演讲 发布:2025-07-09 20:27:46 浏览:635
三年级数学同步 发布:2025-07-09 20:04:31 浏览:338
高考全国卷化学 发布:2025-07-09 19:48:29 浏览:845
如何查看聊天记录 发布:2025-07-09 19:15:55 浏览:807
化学元素族 发布:2025-07-09 17:19:25 浏览:656