数学三考啥
考研数学差别主要在:考察范围和难易程度上。
一、考试科目:
考研数学一和考研数学三的考试科目均有:高等数学、线性代数、概率论与数理统计。各科目所占比例为:高等数学56%、线性代数22%、概率论与数理统计22%。两者是一样的的。
二、考察范围:
在高等数学中,数一、数三的主要区别在于:空间解析几何、多元函数积分学(二重积分以外),仅数学一考查;微积分的物理应用,仅数学一、考查;微积分的经济学应用,仅数学三考查。
在线性代数中,数一、数三的考试内容和要求几乎一样,唯一的区别是数学一多了向量空间的内容,这部分考点在考试中涉及得很少,对考生的复习没有实质性影响。
在概率论与数理统计中,数学一的考试范围比数学三略大,主要增加了参数估计部分的考点,包括估计量的评选标准、区间估计以及后续的假设检验。
三、难易程度:
数一的考察范围比较大,要求程度也比数三高,数一的难度整体上比数三稍难。
最后、平时大学成绩与考研数学
考研数学又相对平时大学考试要难得多,请不要掉以轻心!
具体是否来的及,你可以拿往年考研真题,真实模拟下自己的复习情况,有针对的复习。
资料拓展:
1、针对考研的数学科目,根据各学科、专业对硕士研究生入学所应具备的数学知识和能力的不同要求,硕士研究生入学统考数学试卷分为3种:其中针对工科类的为数学一、数学二;针对经济学和管理学类的为数学三(2009年之前管理类为数学三,经济类为数学四,2009年之后大纲将数学三数学四合并)。具体不同专业所使用的试卷种类有具体规定。
2、根据工学、经济学、管理学各学科、专业对硕士研究生入学所应具备的数学知识和能力的不同要求,硕士研究生入学统考数学试卷分为3种,其中针对工学门类的为数学一、数学二,针对经济学和管理学门类的为数学三。招生专业须使用的试卷种类规定如下:
须使用数学一的招生专业:
a、工学门类中的力学、机械工程、光学工程、仪器科学与技术、冶金工程、动力工程及工程热物理、电气工程、电子科学与技术、信息与通信工程、控制科学与工程、网络工程、电子信息工程、计算机科学与技术、土木工程、测绘科学与技术、交通运输工程、船舶与海洋工程、航空宇航科学与技术、兵器科学与技术、核科学与技术、生物医学工程等20个一级学科中所有的二级学科、专业。
b、授工学学位的管理科学与工程一级学科。
(资料来源:网络:考研数学)
⑵ 考研数学二跟数学一、数学三有什么区别呢
数学一:是报考理工科的学生考,考试内容包括高等数学,线性代数和概率论与数理统计,考试的内容是最多的。
数学二:是报考农学的学生考,考试内容只有高等数学和线性代数,但是高等数学中删去的较多,是考试内容最少的。
数学三:是报考经济学的学生考,考试内容是高等数学,线性代数和概率统计。高数部分中,主要重视微积分的考察,概率统计中没有假设检验和置信区间。
其中:
数学一是对数学要求较高的理工类的;哲学类,经济学类,管理学类,教育学类,文学类;
数学二是对于数学要求要低一些的农、林、地、矿、油等等专业的;
数学三是针对管理、经济等等方向的。
数一考得比较全面,高数,线代,概论都考,而且题目偏难;数二不考概论,而且题目较数一容易;数三考得也很全面,题目的难度不比数一简单多少。
⑶ 考研数学一和数学三内容上有哪些差别
种类内容比例 题型比例 数学一高等数学 约56%
线性代数 约22%
概率论与数理统计 约 22% 填空题与选择题约 45%
解答题(包括证明题) 约55%数学二高等数学 约78%
线性代数 约22% 填空题与选择题约 45%
解答题(包括证明题) 约55%数学三微积分 约56%
线性代数 约22%
概率论与数理统计 约 22% 填空题与选择题约 45%
解答题(包括证明题) 约55% 而对于数学三来说,考试大纲可能会有些变化,因为教育部从2009年起,将原来的数学三、数学四进行整合。整合后称为“数学三”。而原使用数学三或数学四的招生专业从2009年开始使用新的“数学三”,相比于原来的数学四,新的“数学三”增加了三方面的内容,具体有:增加了无穷级数的相关内容;增加了线性微分方程解的性质及解的结构定理、二阶微分方程及差分方程的相关内容;增加了数理统计的基本概念、点估计的概念、矩估计法及最大似然估计的相关内容;相比于原来的数学三新的“数学三”在一部分内容上有所减少,且在部分知识点上要求有所降低。具体有:降低了无穷级数中部分考试内容的要求; 降低了常微分方程与差分方程中二阶微分方程、差分方程的考试要求;降低了概率论中的切比雪夫不等式的考试要求;降低了数理统计的基本概念中部分考试内容的考试要求;降低了参数估计中点估计等概念的考试要求;删除了参数估计中估计量的评选标准和区间估计的考试内容;删除了假设检验的全部内容。
从数学三09年与08年的真题对比可以看出:08年数学三解答题中考了无穷级数和数理统计部分各一大题,而09年数学三中只有概率的两个大题,统计部分并没有出大题,所以说今年的考试中可能会出现统计的大题,所以说2010年的考试大纲中可能会增加统计部分的考试要求,而对于级数部分同学们可以依然按照09年的大纲要求来进行复习,具体的变化可以等考试大纲出来后再进行调整和复习。所以考生在策略上要有的放矢,针对变化的内容,认真阅读考试大纲的考试内容和考试要求,对变化的章节部分各个击破,不予遗漏。同学们不要担心,扎扎实实的打好基础,无论要求怎么样?“了解”“理解”“掌握”还是“会求”都应该踏踏实实的打好基础,只有打好基础,不论是考查基本概念、基本理论还是基本方法,都会游刃有余的解决掉,因为无论从哪个角度出题,只要是考纲涉及到的,都有可能会考到,所以同学们在复习的过程中一定要认认真真的一步一个脚印的学习,而且还要多动脑思考,动手计算,不是只看题觉得会了,其实还是要动手做做你才会觉得那真的是不一样的收获。数学的学习就是日积月累的过程,要坚持不懈持之以恒一定会有很大的进步,最后也会取得自己满意的成绩的。
⑷ 303数学三是哪些科目金融考研.
数学是统考的,数三是金融财会类型的考生要参加的,考察内容是高数,线性代内数以及容概率与数理统计这三门课,知识点上比数学一少,但多于数学二。比较受欢迎的参考书是2李版的数学全书配合660题,最后再买本真题就行,记得要买数学三版本的,几本书都是,有问题追问,无问题欢迎采纳
⑸ 考研数学三考什么
考研数学三考什么?考研数学三考什么内容?数学三大纲包括微积分、线性代数、概率论与数理统计。均要求理解概念,掌握表示法,会建立应用问题的函数关系。
考试内容:
一、微积分函数、极限、连续考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性.单调性.周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.了解数列极限和函数极限(包括左极限与右极限)的概念.6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.7.理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理.介值定理),并会应用这些性质.
二、一元函数微分学考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数 会求反函数与隐函数的导数.3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.5.理解罗尔(Rolle)定理.拉格朗日( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.6.会用洛必达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数具有二阶导数.当 时, 的图形是凹的当 时, 的图形是凸的),会求函数图形的拐点和渐近线.9.会描述简单函数的图形.
三、一元函数积分学考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.3.会利用定积分计算平面图形的面积.旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.4.了解反常积分的概念,会计算反常积分.
⑹ 数学三 是指什么。。。
晕,楼上两人纯粹胡说。数一二三四都有高数好吧,不过貌似09年考研的时候数三数四合并为数三了。
数一二三四区别只是考的高数的内容不同,整体而言都是从高等数学、线性代数、概率论与数理统计三本书里面划范围,侧重点不同而已。数一难度最大,三本全考,理工科大部分都考数一,具体考什么内容要看考研大纲的。一般来说都是8月份的时候出新大纲的,但是数学每年考纲变动都很小,所以你现在完全可以按照2010数三大纲复习,待8月份新大纲发布之后再查补也是完全可以的。
2010年数三考研大纲在网络文库里面有,网址:
http://wenku..com/view/38cf7e7f5acfa1c7aa00cc84.html
2010年数一考研大纲
http://wenku..com/view/42fe52cfa1c7aa00b52acb84.html
2010年数二考研大纲
http://wenku..com/view/6fa9995f804d2b160b4ec084.html
2010年全国硕士研究生入学统一考试数学考试大纲--数学三
考试科目:微积分.线性代数.概率论与数理统计
考试形式和试卷结构
一、试卷满分及考试时间
试卷满分为150分,考试时间为180分钟.
二、答题方式
答题方式为闭卷、笔试.
三、试卷内容结构
微积分 56%
线性代数 22%
概率论与数理统计 22%
四、试卷题型结构
试卷题型结构为:
单项选择题选题 8小题,每题4分,共32分
填空题 6小题,每题4分,共24分
解答题(包括证明题) 9小题,共94分
微 积 分
一、函数、极限、连续
考试内容
函数的概念及表示法 函数的有界性.单调性.周期性和奇偶性 复合函数.反函数.分段函数和隐函数基本初等函数的性质及其图形 初等函数 函数关系的建立
数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:
函数连续的概念函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质
考试要求
1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.
2.了解函数的有界性.单调性.周期性和奇偶性.
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.
4.掌握基本初等函数的性质及其图形,了解初等函数的概念.
5.了解数列极限和函数极限(包括左极限与右极限)的概念.
6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.
7.理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.
8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.
9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理.介值定理),并会应用这些性质.
二、一元函数微分学
考试内容
导数和微分的概念 导数的几何意义和经济意义 函数的可导性与连续性之间的关系 平面曲线的切线与法线 导数和微分的四则运算 基本初等函数的导数 复合函数.反函数和隐函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性.拐点及渐近线 函数图形的描绘 函数的最大值与最小值
考试要求
1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.
2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数 会求反函数与隐函数的导数.
3.了解高阶导数的概念,会求简单函数的高阶导数.
4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.
5.理解罗尔(Rolle)定理.拉格朗日( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.
6.会用洛必达法则求极限.
7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.
8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数.当 时, 的图形是凹的;当 时, 的图形是凸的),会求函数图形的拐点和渐近线.
9.会描述简单函数的图形.
三、一元函数积分学
考试内容
原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿一莱布尼茨(Newton- Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 反常(广义)积分 定积分的应用
考试要求
1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.
2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.
3.会利用定积分计算平面图形的面积.旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.
4.了解反常积分的概念,会计算反常积分.
四、多元函数微积分学
考试内容
多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念有界闭区域上二元连续函数的性质 多元函数偏导数的概念与计算 多元复合函数的求导法与隐函数求导法 二阶偏导数全微分 多元函数的极值和条件极值.最大值和最小值 二重积分的概念.基本性质和计算 无界区域上简单的反常二重积分
考试要求
1.了解多元函数的概念,了解二元函数的几何意义.
2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.
3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.
4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题.
5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标.极坐标).了解无界区域上较简单的反常二重积分并会计算.
五、无穷级数
考试内容
常数项级数收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与 级数及其收敛性 正项级数收敛性的判别法 任意项级数的绝对收敛与条件收敛 交错级数与莱布尼茨定理 幂级数及其收敛半径.收敛区间(指开区间)和收敛域 幂级数的和函数 幂级数在其收敛区间内的基本性质 简单幂级数的和函数的求法 初等函数的幂级数展开式
考试要求
1.了解级数的收敛与发散.收敛级数的和的概念.
2.了解级数的基本性质和级数收敛的必要条件,掌握几何级数及 级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法.
3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法.
4.会求幂级数的收敛半径、收敛区间及收敛域.
5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数.
6.了解 . . . 及 的麦克劳林(Maclaurin)展开式.
六、常微分方程与差分方程
考试内容
常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程及简单的非齐次线性微分方程 差分与差分方程的概念 差分方程的通解与特解 一阶常系数线性差分方程 微分方程的简单应用
考试要求
1.了解微分方程及其阶、解、通解、初始条件和特解等概念.
2.掌握变量可分离的微分方程.齐次微分方程和一阶线性微分方程的求解方法.
3.会解二阶常系数齐次线性微分方程.
4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式.指数函数.正弦函数.余弦函数的二阶常系数非齐次线性微分方程.
5.了解差分与差分方程及其通解与特解等概念.
6.了解一阶常系数线性差分方程的求解方法.
7.会用微分方程求解简单的经济应用问题.
线 性 代 数
一、行列式
考试内容
行列式的概念和基本性质 行列式按行(列)展开定理
考试要求
1.了解行列式的概念,掌握行列式的性质.
2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.
二、矩阵
考试内容
矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价 分块矩阵及其运算
考试要求
1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.
2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.
3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.
4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.
5.了解分块矩阵的概念,掌握分块矩阵的运算法则.
三、向量
考试内容
向量的概念 向量的线性组合与线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量的内积 线性无关向量组的正交规范化方法
考试要求
1.了解向量的概念,掌握向量的加法和数乘运算法则.
2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.
3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.
4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.
5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法.
四、线性方程组
考试内容
线性方程组的克莱姆(Cramer)法则 线性方程组有解和无解的判定 齐次线性方程组的基础解系和通解 非齐次线性方程组的解与相应的齐次线件方程组(导出组)的解之间的关系 非齐次线性方程组的通解
考试要求
1.会用克莱姆法则解线性方程组.
2.掌握非齐次线性方程组有解和无解的判定方法.
3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.
4.理解非齐次线性方程组解的结构及通解的概念.
5.掌握用初等行变换求解线性方程组的方法.
五、矩阵的特征值和特征向量
考试内容
矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值和特征向量及相似对角矩阵
考试要求
1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.
2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.
3.掌握实对称矩阵的特征值和特征向量的性质.
六、二次型
考试内容
二次型及其矩阵表示合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性
考试要求
1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.
2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.
3.理解正定二次型.正定矩阵的概念,并掌握其判别法.
概率论与数理统计
一、随机事件和概率
考试内容
随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验
考试要求
1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.
2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等.
3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.
二、随机变量及其分布
考试内容
随机变量 随机变量的分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度常见随机变量的分布 随机变量函数的分布
考试要求
1.理解随机变量的概念,理解分布函数
的概念及性质,会计算与随机变量相联系的事件的概率.
2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布 、几何分布、超几何分布、泊松(Poisson)分布 及其应用.
3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.
4.理解连续型随机变量及其概率密度的概念,掌握均匀分布 、正态分布 、指数分布及其应用,其中参数为 的指数分布 的概率密度为
5.会求随机变量函数的分布.
三、多维随机变量及其分布
考试内容
多维随机变量及其分布函数 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常见二维随机变量的分布 两个及两个以上随机变量的函数的分布
考试要求
1.理解多维随机变量的分布函数的概念和基本性质.
2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度、掌握二维随机变量的边缘分布和条件分布.
3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.
4.掌握二维均匀分布和二维正态分布 ,理解其中参数的概率意义.
5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布.
四、随机变量的数字特征
考试内容
随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望切比雪夫(Chebyshev)不等式 矩、协方差、相关系数及其性质
考试要求
1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.
2.会求随机变量函数的数学期望.
3.了解切比雪夫不等式.
五、大数定律和中心极限定理
考试内容
切比雪夫大数定律 伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律 棣莫弗—拉普拉斯(De Moivre-Laplace)定理 列维—林德伯格(Levy-Lindberg)定理
考试要求
1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).
2.了解棣莫弗—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率.
六、数理统计的基本概念
考试内容
总体 个体 简单随机样本 统计量 经验分布函数样本均值 样本方差和样本矩 分布 分布 分布 分位数 正态总体的常用抽样分布
考试要求
1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为
2.了解产生 变量、 变量和 变量的典型模式;了解标准正态分布、 分布、 分布和 分布得上侧 分位数,会查相应的数值表.
3.掌握正态总体的样本均值.样本方差.样本矩的抽样分布.
4.了解经验分布函数的概念和性质.
七、参数估计
考试内容
点估计的概念 估计量与估计值 矩估计法 最大似然估计法
考试要求
1.了解参数的点估计、估计量与估计值的概念.
2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.
⑺ 考研数学三是什么
微积分、线性代数、概率论与数理统计。
试卷内容结构:微积分 56%;线性代数 22%;概率论与数理统计 22%。
微积分函数、极限、连续考试要求:
1、理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系;
2、了解函数的有界性.单调性.周期性和奇偶性;
3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念;
4、掌握基本初等函数的性质及其图形,了解初等函数的概念;
5、理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系;
6、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型;
7、了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理.介值定理),并会应用这些性质。
(7)数学三考啥扩展阅读:
常微分方程与差分方程考试要求:
1、了解微分方程及其阶、解、通解、初始条件和特解等概念;
2、掌握变量可分离的微分方程.齐次微分方程和一阶线性微分方程的求解方法;
3、会解二阶常系数齐次线性微分方程;
4、了解线性微分方程解的性质及解的结构定理,会解自由项为多项式.指数函数.正弦函数.余弦函数的二阶常系数非齐次线性微分方程;
5、了解差分与差分方程及其通解与特解等概念;
6、了解一阶常系数线性差分方程的求解方法;
7、会用微分方程求解简单的经济应用问题。
参考资料:
考研数学三大纲--网络
⑻ 考研数学三的考试范围是什么
数学三考试来内容有哪些?自
① 积分(函数、极限、连续、一元函数微积分学、多元函数微积分学、无穷级数、常微分方程与差分方程);
② 线性代数(行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型);
③ 概率论与数理统计(随机事件和概率、随机变量及其概率分布、随机变量的联合概率分布、随机变量的数字特征、大数定律和中心极限定理、数理统计的基本概念、参数估计、假设检验)。
09年、10年、11年、12年、13年一模一样,一个字都没有改。也就是说考研数学大纲从09年做了一次大变动,把老的数学三、数学四,合并成数学三以后,这几年考研的数学大纲就稳定了,五年来考研数学大纲都一模,所以14年考研数学复习,仍旧可以参照往年的大纲。
⑼ 考研数学三有多难
考研数学的难度只是相对而言的,一般认为数学一最难,数学二其次,数学三最简单。数三的考试大纲是最少的。
考研数学三大纲是考研数学三(科目代码303)的考试纲要,包括微积分、线性代数、概率论与数理统计。均要求理解概念,掌握表示法,会建立应用问题的函数关系。
数学三考试大纲及相关要求:
微积分
函数、极限、连续
考试要求
1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。
2.了解函数的有界性、单调性、周期性和奇偶性。
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
4.掌握基本初等函数的性质及其图形,了解初等函数的概念。
5.理解极限的概念,理解函数左极限和右极限的概念以及极限函数存在与左极限、右极限之间的关系。
6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法。
7.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小求极限。
8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。
一元函数微分学
考试要求
1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程。
2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数 会求反函数与隐函数的导数。
3.了解高阶导数的概念,会求简单函数的高阶导数,
4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分。
5.理解并会用罗尔(Rolle)定理、拉格朗日( Lagrange)中值定理和泰勒定理,了解并会用柯西(Cauchy)中值定理。
6.掌握用洛必达法则求未定式极限的方法。
7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用。
8.会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。
一元函数积分学
考试要求
1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法。
2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿—莱布尼茨公式以及定积分的换元积分法和分部积分法。
3.会利用定积分计算平面图形的面积.旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题,
4.理解反常积分的概念,了解反常积分收敛的比较判别法,会计算反常积分,
多元函数微积分学
考试要求
1.了解多元函数的概念,了解二元函数的几何意义。
2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质。
3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数。
4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题。
5.理解二重积分的概念,了解二重积分的与基本性质,了解二重积分的中值定理,掌握二重积分的计算方法(直角坐标.极坐标),了解无界区域上较简单的反常二重积分并会计算。
无穷级数
考试要求
1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件。
2.掌握几何级数与p级数的收敛和发散的条件。
3.掌握正项级数收敛性的比较判别法、比值判别法、根值判别法,会用积分判别法。
4.掌握交错级数的莱布尼茨判别法。
5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系。
6.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法。
7.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和。
8.掌握 e的x次方,sin x,cos x,ln(1+x)及(1+x)的a次方的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数。
常微分方程与差分方程
考试要求
1.了解微分方程及其阶、解、通解、初始条件和特解等概念。
2.掌握变量可分离的微分方程。齐次微分方程和一阶线性微分方程的求解方法。
3.理解线性微分方程解的性质及解的结构。
4.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。
5.会解自由项为多项式、指数函数、正弦函数、余弦函数以及他们的和与积的二阶常系数非齐次线性微分方程。
6.了解差分与差分方程及其通解与特解等概念。
7.了解一阶常系数线性差分方程的求解方法。
8.会用微分方程求解简单的经济应用问题。
线性代数
行列式
考试内容:行列式的概念和基本性质行列式按行(列)展开定理
考试要求
1.了解行列式的概念,掌握行列式的性质。
2.会应用行列式的性质和行列式按行(列)展开定理计算行列式。
矩阵
考试要求
1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质。
2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质。
3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵。
4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法。
5.了解分块矩阵的概念,掌握分块矩阵的运算法则。
向量
考试要求
1.了解向量的概念,掌握向量的加法和数乘运算法则。
2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法。
3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩。
4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系。
5.了解内积的概念。掌握线性无关向量组正交规范化的施密特(Schmidt)方法。
线性方程组
考试要求
1.会用克莱姆法则解线性方程组。
2.掌握非齐次线性方程组有解和无解的判定方法。
3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法。
4.理解非齐次线性方程组解的结构及通解的概念。
5.掌握用初等行变换求解线性方程组的方法。
矩阵的特征值和特征向量
考试要求
1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法。
2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法。
3.掌握实对称矩阵的特征值和特征向量的性质。
二次型
考试要求
1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理。
2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形。
3.理解正定二次型。正定矩阵的概念,并掌握其判别法,
概率统计
随机事件和概率
考试要求
1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算。
2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等。
3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法。
随机变量及其分布
考试要求
1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率。
2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布 、几何分布、超几何分布、泊松(Poisson)分布及其应用。
3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布。
4.理解连续型随机变量及其概率密度的概念,掌握均匀分布 、正态分布 、指数分布及其应用。
5.会求随机变量函数的分布。
多维随机变量及其分布
考试要求
1.理解多维随机变量的分布函数的概念和基本性质。
2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度、掌握二维随机变量的边缘分布和条件分布。
3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系。
4.掌握二维均匀分布和二维正态分布,理解其中参数的概率意义。
5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布。
随机变量的数字特征
考试要求
1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征。
2.会求随机变量函数的数学期望。
3.了解切比雪夫不等式。
大数定律和中心极限定理
考试要求
1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律)。
2.了解棣莫弗—拉普拉斯中心极限定理(二项分布以正态分布为极限分布)、列维—林德伯格中心极限定理(独立同分布随机变量序列的中心极限定理),并会用相关定理近似计算有关随机事件的概率。
数理统计的基本概念
考试要求
1.了解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念。
2.了解产生 变量、 变量和 变量的典型模式;了解标准正态分布、t分布、F分布和分布得上侧 分位数,会查相应的数值表。
3.掌握正态总体的样本均值、样本方差、样本矩的抽样分布。
4.了解经验分布函数的概念和性质。
参数估计
考试内容:点估计的概念 估计量与估计值 矩估计法 最大似然估计法。
考试要求
1.了解参数的点估计、估计量与估计值的概念。
2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法。
⑽ 考研数学三的范围
数学三:针对管理、经济等方向
(1)考试内容:
a.微积分(函数、极限、连续、一内元函数微积分学容、多元函数微积分学、无穷级数、常微分方程与差分方程);
b.线性代数(行列式、矩阵、向量、线性方程组、矩阵的特征值和特征向量、二次型);
c.概率论与数理统计(随机事件和概率、随机变量及其概率分布、二维随机变量及其概率分布、随机变量的数字特征、大数定律和中心极限定理、数理统计的基本概念、参数估计、假设检验)。
(2)适用专业:
a.经济学门类的理论经济学一级学科中的所有二级学科、专业;
b.经济学门类的应用经济学一级学科中的统计学科、专业、统计学、数量经济学、国民经济学、区域经济学、财政学(含税收学)、金融学(含保险学)、产业经济学、财政学(含税收学)、金融学(含保险学)、产业经济、国际贸易学、劳动经济学、国防经济。
c.管理学门类的工程管理一级学科中的二级学科、专业;企业管理(含财务管理、市场营销、人力资源管理)、技术经济及管理、会计学、旅游管理。
d.管理学门类的农林经济管理一级学科中的所有二级学科、专业。