虚数的物理意义
Ⅰ 虚数在实际生活中究竟有什么意义
虚数在实际生活中的意义表现在以下几个方面:
1、虚数的作用:加法
虚数的引入,大大方便了涉及到旋转的计算。45度的航向就是 1 + i 。计算新航向,只要把这两个航向 3 + 4i 与 1 + i 相乘就可以了(原因在下一节解释):
( 3 + 4i ) * ( 1 + i ) = ( -1 + 7i )
所以,该船的新航向是 -1 + 7i 。
如果航向逆时针增加90度,就更简单了。因为90度的航向就是 i ,所以新航向等于:
( 3 + 4i ) * i = ( -4 + 3i )
这就是虚数乘法的物理意义:改变旋转角度。
Ⅱ 虚数的真实物理意义有哪些
表示角度 如果你学过复数的三角或者指数表达式就会发现 虚数可以表示为 Ae^(ai) A为模长 a为幅角 这就使得任何一个向量都可以用这个来表示 这个意义不只是简化了表达的方式 而且复数的运算也是更简单的 而且复数与三角形式是可以转化的 在电磁学里往往算周期什么的就需要换成三角形式 复数在这上面有优势
ps1:实轴和虚轴冰不是无聊透顶的牵强附合的解释 实际上高中阶段只告诉你这是一一映射 其实原不是这么简单 还是要化成指数形式 你会发现 i=e^(pai/2 *i) pai/2就是弧度制的90度 而 根号i等于 e^(pai/4 i) 也就是45度 也就是说 每一个纯虚数i都表示一个旋转的角度....
ps2:虚数在相对论方面也是很重要的 不过我自己都搞不清楚........
Ⅲ 虚数的实际意义
把形如z=a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。当虚部等于零时,这个复数可以视为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。
在数学中,虚数是对实数系的扩展。利用复数可以构建四维坐标系,四维坐标系是三维实数坐标系与三维虚数坐标系组合而成的。三维实数坐标系上的点与四维复数坐标系存在映射对应关系,每一个实数坐标点对应两个不同的四维坐标点。因此,虚数只有在四维坐标中才具有现实的数值意义。
(3)虚数的物理意义扩展阅读
1777年瑞士数学家欧拉(Euler,或译为欧勒)开始使用符号i表示虚数的单位。而后人将虚数和实数有机地结合起来,写成a+bi形式 (a、b为实数,a等于0时叫纯虚数,ab都不等于0时叫复数,b等于0时就是实数)。
而在工程运算中,为了不与其他符号(如电流的符号)相混淆,有时也用j或k等字母来表示虚数的单位。通常,我们用符号C来表示复数集,用符号R来表示实数集。
Ⅳ 虚数的真实物理意义有哪些
一、什么是虚数?首先,假设有一根数轴,上面有两个反向的点:+1和-1。
这根数轴的正向部分,可以绕原点旋转。显然,逆时针旋转180度,+1就会变成-1。
这相当于两次逆时针旋转90度。
因此,我们可以得到下面的关系式:
(+1) * (逆时针旋转90度) * (逆时针旋转90度) = (-1)如果把+1消去,这个式子就变为:
(逆时针旋转90度)^2 = (-1)将"逆时针旋转90度"记为 i :
i^2 = (-1)
这个式子很眼熟,它就是虚数的定义公式。
所以,我们可以知道,虚数 i 就是逆时针旋转90度,i 不是一个数,而是一个旋转量。
二、复数的定义既然 i 表示旋转量,我们就可以用 i ,表示任何实数的旋转状态。
将实数轴看作横轴,虚数轴看作纵轴,就构成了一个二维平面。旋转到某一个角度的任何正实数,必然唯一对应这个平面中的某个点。
只要确定横坐标和纵坐标,比如( 1 , i ),就可以确定某个实数的旋转量(45度)。
数学家用一种特殊的表示方法,表示这个二维坐标:用 + 号把横坐标和纵坐标连接起来。比如,把 ( 1 , i ) 表示成 1 + i 。这种表示方法就叫做复数(complex number),其中 1 称为实数部,i 称为虚数部。
为什么要把二维坐标表示成这样呢,下一节告诉你原因。
三、虚数的作用:加法虚数的引入,大大方便了涉及到旋转的计算。
比如,物理学需要计算"力的合成"。假定一个力是 3 + i ,另一个力是 1 + 3i ,请问它们的合成力是多少?
根据"平行四边形法则",你马上得到,合成力就是 ( 3 + i ) + ( 1 + 3i ) = ( 4 + 4i )。
这就是虚数加法的物理意义。
四、虚数的作用:乘法如果涉及到旋转角度的改变,处理起来更方便。
比如,一条船的航向是 3 + 4i 。如果该船的航向,逆时针增加45度,请问新航向是多少?
45度的航向就是 1 + i 。计算新航向,只要把这两个航向 3 + 4i 与 1 + i 相乘就可以了(原因在下一节解释):( 3 + 4i ) * ( 1 + i ) = ( -1 + 7i )
所以,该船的新航向是 -1 + 7i 。
如果航向逆时针增加90度,就更简单了。因为90度的航向就是 i ,所以新航向等于:
( 3 + 4i ) * i = ( -4 + 3i )
这就是虚数乘法的物理意义:改变旋转角度。
五、虚数乘法的数学证明为什么一个复数改变旋转角度,只要做乘法就可以了?
下面就是它的数学证明,实际上很简单。
任何复数 a + bi,都可以改写成旋转半径 r 与横轴夹角 θ 的形式。
假定现有两个复数 a + bi 和 c + di,可以将它们改写如下:
a + bi = r1 * ( cosα + isinα )
c + di = r2 * ( cosβ + isinβ )
这两个复数相乘,( a + bi )( c + di ) 就相当于
r1 * r2 * ( cosα + isinα ) * ( cosβ + isinβ )
展开后面的乘式,得到
cosα * cosβ - sinα * sinβ + i( cosα * sinβ + sinα * cosβ )
根据三角函数公式,上面的式子就等于
cos(α+β) + isin(α+β)
所以,
( a + bi )( c + di ) = r1 * r2 * ( cos(α+β) + isin(α+β) )
这就证明了,两个复数相乘,就等于旋转半径相乘、旋转角度相加。
Ⅳ 虚数的物理意义
虚数的物理指称性呼唤着新数学
众所周知,实数具有物理指称性,比如称某物质量为5千克,体积为15立方厘米等等,都是用实数作为物理指称的。一般认为,只有具有实数物理指称性的对象才可能具有可运算性、可观察性、可分性、可延性、有序性等等物理性质,因而是物理实在,否则就是非物理实在,是虚幻的乌有。因此,按照这样的观点,虚数在物理中是没有地位的,因为没有虚数的物理指称性,即虚数的物理指称性的事物是不存在,如果谁说有存在,那肯定是假的。所以,虽然虚数早在16世纪就被卡尔丹发现,但是至今仍然是卡迪尔的观点:“虚数的本意是指它是假的”在人们物质观中占统治地位。
今天,如果说虚数是具有物理指称性的,可能为时尚早,但是,说这种可能性已经初现端倪,却不是空穴来风。虽然虚数早已通过复数形式“半推半就”地进入物理学,但是被指称为虚过程(如跃迁)和虚粒子(如虚光子)事实上是越来越多了。尽管目前这些事例大多还集中在微观物理中,但是不能否认它们是具有虚数的物理指称性的事实。因此,我想难道我们就不能大胆地推进一步,设想夸克、暗能量和真空都是具有虚数的物理指称性的对象?
但是,物理学作为一门科学,可不是仅凭一句:“夸克之所以不具有可观察性性由于它是虚的”就可以了事,而必须提供足够的理论证明。倘若果真如上述设想,夸克、暗能量和真空都是具有虚数的物理指称性的对象,那么很可能预示一门新的物理学将产生。物理学史表明,一门新物理学总是伴随着一门新数学,这是因为数学是物理学的最主要工具之一。因此,倘若新的物理学是包含夸克、暗能量和真空在内的具有虚数的物理指称性的对象的物理理论,那么以虚数为基本概念的新数学就是必要的。我们可以预示,这门新数学的运算方法必然与现在代数中的虚数简单方法有重大补充和差异,其内涵必然远远大于现在代数中的虚数内容。因此,历史可能会重演当年物理学家狄拉克需要δ函数而产生广义函数理论一样,人们需要能够描述具有虚数的物理指称性的对象关系的方法而产生新的数学。
作为一个或许有启发性的例子,我在研究夸克与强子的关系中发现[1],如果把夸克认定为虚的,同时又和电子一样满足Bohr假说和Pauli原理,那么只要假定强子实质量H是由n个虚夸克qi之交按照H=∑q/n(n)1/2进行计算,可以直接得到基态夸克和强子及其共振态的全部质量谱,得到的强子及其共振态的质量值都与观测值相当吻合,而三个基态夸克质量之间的关系可以由黄金分割数所界定[2],同时还可以得到许多与观察事实相吻合的结果。然而,这里的问题是,虽然上述得到的物理结果是成功的,但是它显然缺少一个坚实的数学基础,那就是我所希望出现的新数学。
Ⅵ 虚数有什么物理意义,虚数是不是适用于量
在物理学中引入复数结构的必需性的根源和复数最重要的物理意义在于量子力学运动规律限定的数学结构。用群论的语言概括:概率守恒要求演化规律的数学结构是酉群 U(n) (参见https://en.wikipedia.org/wiki/Unitarity_(physics)), 而 U(n) 恰好可以分解为正交群 O(n) 和实数域的辛群 Sp(2n, R): U(n) = O(n) ∩ Sp(2n, R) , O(n) 的物理意义是概率守恒,Sp(2n, R) 的物理意义正是量子力学限定的运动规律。
比如虚时间:
虚时间是研究关于宇宙大爆炸初期时间失效,而构建出一种与时间轴成90度的虚时间轴.
Ⅶ 虚数有什么物理意义,虚时间是什么意思
虚时间是研究关于宇宙大爆炸初期时间失效,而构建出一种与时间轴成90度的虚时间轴。
我个人感觉用什么北极点作比喻还是不太好理解。
假如你对相对论,量子物理学,M理论等有所了解的话,可以这么想象(完全不准确,仅便于理解):
现有的时空模型2维化,可以作出以下一个十分容易理解的模型
1.把3维空间简单的理解成10厘米的直线,起点为坐标轴Y轴正方向上某一点,终点为该点后的10厘米处。
2.把时间简单的理解成10分钟长度,起点为坐标轴X轴正方向上某一点,终点为该点后的10厘米处。
这样,就得到一个时空模型:x轴为时间,一厘米对应一分钟;Y轴为距离,1厘米代表1厘米。
现在我们引入虚时间。
假如,之前做成的时空模型建立在桌子上的记事本中,那虚时间轴z轴就是垂直于桌面的一根轴。
这样,时间轴就变成了一个类似于显示器时间面。
而时间线可以理解成类似显示器对角线的一根直线。
如果我们以x轴作为时间流失的参照,那时间线Y轴时间流逝比率与x轴相同。
也就可以理解,此时此刻虚时间与实时间流逝相同。
但如果一直沿着x轴退到原点处,即刚刚大爆炸之后,由于当时诸如速度等其他因素影响,
当时的时间轴几乎平行虚时间轴Z轴。
也就是说,即使回溯到大爆炸原点,时间轴仍然是存在的,只不过相对于实时间轴来看,是一个时间奇点;
而实际上这个所谓的极点在虚时间轴上看,仍然是一条时间线。
----------------------------------
华丽的分割线
如果以上形容你仍然不明白,换一个哲学角度的解释
你在玩游戏,从公元0年开始宇宙大爆炸,游戏里过了1000亿年后,游戏中某个物理学家开始研究物理学。
得出的结论是宇宙大爆炸是公元0年。
而事实上,你从玩游戏,到游戏中的1000亿年以后,只用了2小时,
而从宇宙大爆炸到出现宇宙的999亿年,在真实时间里1分钟带过。
相对于游戏中的物理学家,实时间就是1000亿年的时间轴,在这之前没有任何意义。
而在游戏之中的大爆炸原点,事实上并非是真正意义上的时间原点,只是相对于他们世界的时间原点。
现实的时间相对于游戏中的人来说,就可以理解成虚时间。
Ⅷ 什么是虚数虚数的定义是什么
虚数是形如a+b*i的数,其中a,b是实数,且b≠0,i² = - 1。
虚数这个名词是17世纪著名数学家笛卡尔创立,因为当时的观念认为这是真实不存在的数字。后来发现虚数a+b*i的实部a可对应平面上的横轴,虚部b与对应平面上的纵轴,这样虚数a+b*i可与平面内的点(a,b)对应。
首先,假设有一根数轴,上面有两个反向的点:+1和-1。这根数轴的正向部分,可以绕原点旋转。显然,逆时针旋转180度,+1就会变成-1。这相当于两次逆时针旋转90度。
因此,我们可以得到下面的关系式:(+1) * (逆时针旋转90度) * (逆时针旋转90度) = (-1),如果把+1消去,这个式子就变为:(逆时针旋转90度)^2 = (-1) ,将"逆时针旋转90度"记为 i :i^2 = (-1)。
(8)虚数的物理意义扩展阅读
一、虚数加法的物理意义
虚数的引入,大大方便了涉及到旋转的计算。比如,物理学需要计算"力的合成"。假定一个力是 3 + i ,另一个力是 1 + 3i ,计算合成力。根据"平行四边形法则",你马上得到,合成力就是 ( 3 + i ) + ( 1 + 3i ) = ( 4 + 4i )。
二、虚数的作用
如果涉及到旋转角度的改变,处理起来更方便。比如,一条船的航向是 3 + 4i 。如果该船的航向,逆时针增加45度,计算新航向。
45度的航向就是 1 + i 。计算新航向,只要把这两个航向 3 + 4i 与 1 + i 相乘就可以了(原因在下一节解释):( 3 + 4i ) * ( 1 + i ) = ( -1 + 7i )所以,该船的新航向是 -1 + 7i 。如果航向逆时针增加90度,就更简单了。因为90度的航向就是 i ,所以新航向等于:( 3 + 4i ) * i = ( -4 + 3i )。
Ⅸ 虚数有什么物理意义,虚数是不是适用于量子力学的微观
在物理学中引入复数结构的必需性的根源和复数最重要的物理意义在于量子力学运动规律限定的数学结构。用群论的语言概括:概率守恒要求演化规律的数学结构是酉群 U(n) (参见https://en.wikipedia.org/wiki/Unitarity_(physics)), 而 U(n) 恰好可以分解为正交群 O(n) 和实数域的辛群 Sp(2n, R): U(n) = O(n) ∩ Sp(2n, R) , O(n) 的物理意义是概率守恒,Sp(2n, R) 的物理意义正是量子力学限定的运动规律。
比如虚时间:
虚时间是研究关于宇宙大爆炸初期时间失效,而构建出一种与时间轴成90度的虚时间轴.
我个人感觉用什么北极点作比喻还是不太好理解.
假如你对相对论,量子物理学,M理论等有所了解的话,可以这么想象(完全不准确,仅便于理解):
现有的时空模型2维化,可以作出以下一个十分容易理解的模型
1.把3维空间简单的理解成10厘米的直线,起点为坐标轴Y轴正方向上某一点,终点为该点后的10厘米处.
2.把时间简单的理解成10分钟长度,起点为坐标轴X轴正方向上某一点,终点为该点后的10厘米处.
这样,就得到一个时空模型:x轴为时间,一厘米对应一分钟;Y轴为距离,1厘米代表1厘米.
现在我们引入虚时间.
Ⅹ 虚数存在的意义
虚数存在的意义:它可以在平面直角坐标系中画出虚数系统。
如果利用横轴表示全体实数,那么纵轴即可表示虚数。整个平面上每一点对应着一个复数,称为复平面。横轴和纵轴也改称为实轴和虚轴。在此时,一点P坐标为P (a,bi),将坐标乘上i即点绕圆心逆时针旋转90度。
t' = - 1/t这一表达式在几何空间上的意义不大,但若配合狭义相对论,在时间上理解,则可以解释若相对运动速度可以大于光速c,相对时间间隔产生的虚数值,实质上是其实数值的负倒数。也就是所谓回到过去的时间间隔数值可以由此计算出来。
(10)虚数的物理意义扩展阅读
虚数的起源:
“虚数”这个名词是17世纪著名数学家、哲学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。
人们发现即使使用全部的有理数和无理数,也不能解决代数方程的求解问题。像x²+1=0这样最简单的二次方程,在实数范围内没有解。
12世纪的印度大数学家婆什伽罗都认为这个方程是没有解的。他认为正数的平方是正数,负数的平方也是正数,因此,一个正数的平方根是两重的;一个正数和一个负数,负数没有平方根,因此负数不是平方数。这等于不承认方程的负数平方根的存在。