數學專著
中國古代數學專著有:
1、《九章算術》
《九章算術》其作者已不可考。一般認為它是經歷代各家的增補修訂,而逐漸成為現今定本的,西漢的張蒼、耿壽昌曾經做過增補和整理,其時大體已成定本。最後成書最遲在東漢前期,現今流傳的大多是在三國時期魏元帝景元四年(263年),劉徽為《九章》所作的注本。
《九章算術》在數學上還有其獨到的成就,不僅最早提到分數問題,也首先記錄了盈不足等問題,《方程》章還在世界數學史上首次闡述了負數及其加減運演算法則。它是一本綜合性的歷史著作,是當時世界上最簡練有效的應用數學,它的出現標志中國古代數學形成了完整的體系。
2、《周髀算經》
《周髀算經》原名《周髀》,是算經的十書之一。中國最古老的天文學和數學著作,約成書於公元前1世紀,主要闡明當時的蓋天說和四分歷法。唐初規定它為國子監明算科的教材之一,故改名《周髀算經》。
《周髀算經》在數學上的主要成就是介紹了勾股定理。(據說原書沒有對勾股定理進行證明,其證明是三國時東吳人趙爽在《周髀注》一書的《勾股圓方圖注》中給出的)及其在測量上的應用以及怎樣引用到天文計算。)
3、《海島算經》
《海島算經》是中國學者編撰的最早一部測量數學著作,亦為地圖學提供了數學基礎。由劉徽於三國魏景元四年(公元263年)所撰,本為《九章算術注》之第十卷,題為《重差》。
唐初開始單行,體例亦是以應用問題集的形式。研究的對象全是有關高與距離的測量,所使用的工具也都是利用垂直關系所連接起來的測竿與橫棒。有人說是實用三角法的啟蒙,不過其內容並未涉及三角學中的正餘弦概念。所有問題都是利用兩次或多次測望所得的數據,來推算可望而不可及的目標的高、深、廣、遠。
4、《張丘建算經》
《張丘建算經》,中國古代數學著作。(約公元5世紀)現傳本有92問,比較突出的成就有最大公約數與最小公倍數的計算,各種等差數列問題的解決、某些不定方程問題求解等。
自張邱建以後,中國數學家對百雞問題的研究不斷深入,百雞問題也幾乎成了不定方程的代名詞,從宋代到清代圍繞百雞問題的數學研究取得了很好的成就。
5、《緝古算經》
《緝古算經》 ,中國古代數學著作之一,王孝通撰。他是唐代初期數學家。根據《舊唐書》、《新唐書》以及《唐會要》的記載,王孝通出身於平民,唐高祖武德年間(公元623年前後)擔任算學博士,奉命與吏部郎中祖孝孫校勘傅仁鈞制訂的《戊寅歷》,提出異議30餘條,被提升為太史丞。
王孝通把畢生的精力都用在數學的研究方面。稱得上是這一時期最偉大的數學家。他的最大貢獻是在總結前人研究的基礎上,寫作了《緝古算術》。
Ⅱ 數學專著讀後感
《數學家的眼光》讀後感
數學家的眼光和普通人的不同:在普通人眼中十分復雜的問題,在數學家眼中就變得異常簡單;普通人覺得相當簡單的問題,數學家可能認為非常復雜。作者張景中院士從我們熟悉的問題入手,通俗生動地介紹了數學家是如何從這些簡單的問題中,發現並得出不同凡響的結論的
《數學家的眼光》講的不是解某一類數學題的技巧,它告訴我們的是思考數學問題的思路和方法,讓我們做題更加簡便的「捷徑」。
數學家的眼光可以從「三角形的內角和是180°」這個眾人皆知的數學常識中看到「任意n邊形外角和都是360°」,看到「螞蟻在卵形線上爬一圈,角度改變數之和是360°」,這樣的眼光,怎能不讓人驚嘆!
用圓規畫線段﹐一般人立即反應:怎麼可能呢?若按照常規思考,我們可能回答:「把圓規當鉛筆用,再配合直尺,不就可以畫線段了嗎?」但是在只能用圓規不能用其它工具,畫出絕對的直線段的情況下,可能就需要思考一下了。想一想,若不拘泥在平面上呢?用一個中空的圓罐子,將紙捲成圓柱狀置入,將圓心固定在罐子中央,轉動圓規,在罐子內側的紙上畫圓,當紙拿出後,線段便完成了!
雞兔同籠,數學家的眼光從這個小學的數學問題又能看出什麼呢?雞兔同籠用方程的解法會很簡單,但是它除了方程,還可以用最原始的方法去解。有人可能會笑了:有了簡便的方法,還用那麼笨的方法干什麼?但如果倒過來想,用雞兔同籠的方來做方程的話,那麼很難方程不就好解了嗎?
數學家的眼光,能從基本的數學常識中看出復雜的理論,能從不可能中看出可能,能從簡單的問題中看出那題的解法。在數學家的眼中,最最基礎的理論也可以衍伸變化出高深的數學問題。數學的領域是無窮廣闊的,真正的關鍵在於自己,若我們用心觀察四周的事物,抓住平凡的事實,思考、探索、發掘,會發現數學是耐人尋味且無所不在的。數學家的眼光從洗衣服中都能看見數學的影子,那麼我們也一定能夠從其它事情中看到數學,久而久之,就會慢慢理解數學,喜歡上數學。這樣,數學就不再是讓我們絞盡腦汁去思考的難題,而是生活中處處都有的小精靈。
Ⅲ 數學名著有哪些
國古代數學,和天文學以及其他許多科學技術一樣,也取得了極其輝煌的成就。可以毫不誇張地說,直到明代中葉以前,在數學的許多分支領域里,中國一直處於遙遙領先的地位。中國古代的許多數學家曾經寫下了不少著名的數學著作。許多具有世界意義的成就正是因為有了這些古算書而得以流傳下來。這些中國古代數學名著是了解古代數學成就的豐富寶庫。
例如現在所知道的最早的數學著作《周髀算經》和《九章算術》,它們都是公元紀元前後的作品,到現在已有兩千年左右的歷史了。能夠使兩千年前的數學書籍流傳到現在,這本身就是一項了不起的成就。
開始,人們是用抄寫的方法進行學習並且把數學知識傳給下一代的。直到北宋,隨著印刷術的發展,開始出現印刷本的數學書籍,這恐怕是世界上印刷本數學著作的最早出現。現在收藏於北京圖書館、上海圖書館、北京大學圖書館的傳世南宋本《周髀算經》、《九章算術》等五種數學書籍,更是值得珍重的寶貴文物。
從漢唐時期到宋元時期,歷代都有著名算書出現:或是用中國傳統的方法給已有的算書作註解,在註解過程中提出自己新的演算法;或是另寫新書,創新說,立新意。在這些流傳下來的古算書中凝聚著歷代數學家的勞動成果,它們是歷代數學家共同留下來的寶貴遺產。
《算經十書》
《算經十書》是指漢、唐一千多年間的十部著名數學著作,它們曾經是隋唐時候國子監算學科(國家所設學校的數學科)的教科書。十部算書的名字是:《周髀算經》、《九章算術》、《海島算經》、《五曹算經》、《孫子算經》、《夏侯陽算經》、《張丘建算經》、《五經算術》、《緝古算經》、《綴術》。
這十部算書,以《周髀算經》為最早,不知道它的作者是誰,據考證,它成書的年代當不晚於西漢後期(公元前一世紀)。《周髀算經》不僅是數學著作,更確切地說,它是講述當時的一派天文學學說——「蓋天說」的天文著作。就其中的數學內容來說,書中記載了用勾股定理來進行的天文計算,還有比較復雜的分數計算。當然不能說這兩項演算法都是到公元前一世紀才為人們所掌握,它僅僅說明在現在已經知道的資料中,《周髀算經》是比較早的記載。
對古代數學的各個方面全面完整地進行敘述的是《九章算術》,它是十部算書中最重要的一部。它對以後中國古代數學發展所產生的影響,正像古希臘歐幾里得(約前330—前275)《幾何原本》對西方數學所產生的影響一樣,是非常深刻的。在中國,它在一千幾百年間被直接用作數學教育的教科書。它還影響到國外,朝鮮和日本也都曾拿它當作教科書。
《九章算術》,也不知道確實的作者是誰,只知道西漢早期的著名數學家張蒼(前201—前152)、耿壽昌等人都曾經對它進行過增訂刪補。《漢書?藝文志》中沒有《九章算術》的書名,但是有許商、杜忠二人所著的《算術》,因此有人推斷其中或者也含有許、杜二人的工作。1984年,湖北江陵張家山西漢早期古墓出土《算數書》書簡,67 推算成書當比《九章算術》早一個半世紀以上,內容和《九章算術》極相類似,有些算題和《九章算術》算題文句也基本相同,可見兩書有某些繼承關系。可以說《九章算術》是在長時期里經過多次修改逐漸形成的,雖然其中的某些演算法可能早在西漢之前就已經有了。正如書名所反映的,全書共分九章,一共搜集了二百四十六個數學問題,連同每個問題的解法,分為九大類,每類算是一章。
從數學成就上看,首先應該提到的是:書中記載了當時世界上最先進的分數四則運算和比例演算法。書中還記載有解決各種面積和體積問題的演算法以及利用勾股定理進行測量的各種問題。《九章算術》中最重要的成就是在代數方面,書中記載了開平方和開立方的方法,並且在這基礎上有了求解一般一元二次方程(首項系數不是負)的數值解法。還有整整一章是講述聯立一次方程解法的,這種解法實質上和現在中學里所講的方法是一致的。這要比歐洲同類演算法早出一千五百多年。在同一章中,還在世界數學史上第一次記載了負數概念和正負數的加減法運演算法則。
《九章算術》不僅在中國數學史上佔有重要地位,它的影響還遠及國外。在歐洲中世紀,《九章算術》中的某些演算法,例如分數和比例,就有可能先傳入印度再經阿拉伯傳入歐洲。再如「盈不足」 (也可以算是一種一次內插法),在阿拉伯和歐洲早期的數學著作中,就被稱作「中國演算法」。現在,作為一部世界科學名著,《九章算術》已經被譯成許多種文字出版。
《算經十書》中的第三部是《海島算經》,它是三國時期劉徽(約225—約295)所作。這部書中講述的都是利用標桿進行兩次、三次、最復雜的是四次測量來解決各種測量數學的問題。這些測量數學,正是中國古代非常先進的地圖學的數學基礎。此外,劉徽對《九章算術》所作的注釋工作也是很有名的。一般地說,可以把這些注釋看成是《九章算術》中若干演算法的數學證明。劉徽注中的「割圓術」開創了中國古代圓周率計算方面的重要方法(參見本書第98頁),他還首次把極限概念應用於解決數學問題。
《算經十書》的其餘幾部書也記載有一些具有世界意義的成就。例如《孫子算經》中的「物不知數」問題(一次同餘式解法,參見本書第106頁),《張丘建算經》中的「百雞問題」(不定方程問題)等等都比較著名。而《緝古算經》中的三次方程解法,特別是其中所講述的用幾何方法列三次方程的方法,也是很具特色的。
《綴術》是南北朝時期著名數學家祖沖之的著作。很可惜,這部書在唐宋之際公元十世紀前後失傳了。宋人刊刻《算經十書》的時候就用當時找到的另一部算書《數術記遺》來充數。祖沖之的著名工作——關於圓周率的計算(精確到第六位小數),記載在《隋書?律歷志》中(參見本書第101頁)。
《算經十書》中用過的數學名詞,如分子、分母、開平方、開立方、正、負、方程等等,都一直沿用到今天,有的已有近兩千年的歷史了。
宋元算書
中國古代數學,經過從漢到唐一千多年間的發展,已經形成了更加完備的體系。在這基礎上,到了宋元時期(公元十世紀到十四世紀)又有了新的發展。宋元數學,從它的發展速度之快、數學著作出現之多和取得成就之高來看,都可以說是中國古代數學史上最光輝的一頁。
特別是公元十三世紀下半葉,在短短幾十年的時間里,出現了秦九韶(1202—1261)、李冶(1192—1279)、楊輝、朱世傑四位著名的數學家。所謂宋元算書就指的是一直流傳到現在的這四大家的數學著作,包括:
秦九韶著的《數書九章》(公元1247年);
李冶的《測圓海鏡》(公元1248年)和《益古演段》(公元1259年);
楊輝的《詳解九章演算法》(公元1261年)、《日用演算法》(公元1262年)、《楊輝演算法》(公元1274—1275年);
朱世傑的《算學啟蒙》(公元1299年)和《四元玉鑒》(公元1303年)。
《數書九章》主要講述了兩項重要成就:高次方程數值解法和一次同餘式解法(分別參見本書第119頁和第110頁)。書中有的問題要求解十次方程,有的問題答案竟有一百八十條之多。《測圓海鏡》和《益古演段》講述了宋元數學的另一項成就:天元術(用代數方法列方程,參見本書第121頁);也還講述了直角三角形和內接圓所造成的各線段間的關系,這是中國古代數學中別具一格的幾何學。楊輝的著作講述了宋元數學的另一個重要側面:實用數學和各種簡捷演算法。這是應當時社會經濟發展而興起的一個新的方向,並且為珠算盤的產生創造了條件。朱世傑的《算學啟蒙》不愧是當時的一部啟蒙教科書,由淺入深,循序漸進,直到當時數學比較高深的內容。《四元玉鑒》記載了宋元數學的另兩項成就:四元術(求解高次方程組問題,參見本書第123頁)和高階等差級數、高次招差法(參見本書第131頁)。
宋元算書中的這些成就,和西方同類成果相比:高次方程數值解法比霍納(1786—1837)方法早出五百多年,四元術要比貝佐(1730—1783)①早出四百多年,高次招差法比牛頓(1642—1727)等人早出近四百年。
宋元算書中所記載的輝煌成就再次證明:直到明代中葉之前,中國科學技術的許多方面,是處在遙遙領先地位的。
宋元以後,明清時期也有很多算書。例如明代就有著名的算書《演算法統宗》。這是一部風行一時的講珠算盤的書。入清之後,雖然也有不少算書,但是像《算經十書》、宋元算書所包含的那樣重大的成就便不多見了。特別是在明末清初以後的許多算書中,有不少是介紹西方數學的。這反映了在西方資本主義發展進入近代科學時期以後我國科學技術逐漸落後的情況,同時也反映了中國數學逐漸融合到世界數學發展總的潮流中去的一個過程。
中國數學發展的歷史表明:中國數學曾經為世界數學的發展作出過卓越的貢獻,只是在近代才逐漸落後了。我們深信,經過努力,中國數學一定能迎頭趕上世界先進水平。
注釋:
① 貝佐也譯作裴蜀或比左。
Ⅳ 著名的數學著作有哪些
《周髀算經》是中國現存最早的數學典籍. 《九章算術》約成書於公元紀元前後,系統總結了我國從先秦到西漢中期的數學成就。 南北朝是中國古代數學的蓬勃發展時期,計有《孫子算經》、《夏侯陽算經》、《張丘建算經》等算學著作問世。 賈憲在《黃帝九章演算法細草》中提出開任意高次冪的「增乘開方法」,遺憾的是賈憲的《黃帝九章演算法細草》書稿已佚。 秦九韶是南宋時期傑出的數學家。1247年,他在《數書九章》中將「增乘開方法」加以推廣,論述了高次方程的數值解法, 並且例舉20多個取材於實踐的高次方程的解法(最高為十次方程)。 李冶於1248年發表《測圓海鏡》,該書是首部系統論述「天元術」(一元高次方程)的著作,在數學史上具有里程碑意義。 公元1261年,南宋楊輝(生卒年代不詳)在《詳解九章演算法》中用「垛積術」求出幾類高階等差級數之和。公元1274年他在《乘除通變本末》中還敘述了「九歸捷法」,介紹了籌算乘除的各種運演算法。 公元1303年,元代朱世傑(生卒年代不詳)著《四元玉鑒》。 14世紀中、後葉明王朝建立後統治者奉行以八股文為特徵的科舉制度,在國家科舉考試中大幅度消減數學內容,自此中國古代數學便開始呈現全面衰退之勢。 明代珠算開始普及於中國。1592年程大位編撰的《直指演算法統宗》是一部集珠算理論之大成的著作。徐光啟應用西方的邏輯推理方法論證了中國的勾股測望術,因此而撰寫了《測量異同》和《勾股義》兩篇著作。鄧玉函編譯的《大測》〔2卷〕、《割圓八線表》〔6卷〕和羅雅谷的《測量全義》 〔10卷〕是介紹西方三角學的著作。 華羅庚是蜚聲中外的數學家。他是中國解析數論、典型群、矩陣幾何學、自守與多復便函數等多方面研究的創始人與開拓者。。他共發表學術論文約二百篇,專著有《堆壘素數論》、《高等數學引論》、《指數和的估計及其在數論中的應用》、《典型群》、《多復變數函數論中的典型域的分析》、《數論引導》、《數值積分及其應用》、《從單位圓談起》、《優選法》、《二階兩個自變數兩個未知函數的常系數偏微分方程》、《華羅庚論文選集》等12部。
Ⅳ 有哪些數學著作
科普類:
1 拓撲學奇趣,[蘇聯]伏.巴爾佳斯基,伏.葉弗來莫維契編著,裘光明譯
2 拓撲學的首要概念 作者:(美)陳錫駒(W.G.Chinn), (美)斯廷路德(N.E.Steenrod)著 一般附註:據1966年英文版譯
3 Famous Problems of Elementary Geometry 作 者(德)克萊因(F. Kiein) , 譯 者 沈一兵
4 奇妙而有趣的幾何 作 者 韋爾斯
5 幾何學的故事 作者:列昂納多·姆洛迪諾夫
6 近代歐氏幾何學 作者:(美)R·A·約翰遜著、單壿譯
7 《古今數學思想》, (美)莫里斯·克萊因著,張理京等譯 共4冊
8 《數學,確定性的喪失》 作者:(美)克萊因 著,李宏魁 譯
9 數學珍寶:歷史文獻精選 著 作 者: 李文林
10《幾何學的新探索》 作者:(英)考克瑟特(Doxeter,H.S.M.), (美)格雷策(Greitzer,S.L.)著
11 幾何的有名定理 作者:(日)矢野健太郎著
12 什麼是數學 作者:(美)R·柯,H·羅賓 著,I·斯圖爾特 修訂,左平,張飴慈 譯
13 《證明與反駁》 作者:伊姆雷.拉卡托斯
14 數學與猜想(共兩卷) G.波利亞,
15 《數學的發現》 作者:(美)喬治·波利亞 著, 劉景麟 等譯
16 《怎樣解題》 作者:(美)G·波利亞|譯者:塗泓//馮承天
17 數學——它的內容,方法和意義(共三卷) 原出版社 USSR Academy 作 者 [俄]A.D.亞歷山大洛夫 譯 者 孫小禮, 趙孟養 裘光明 嚴士健
18 圓錐曲線的幾何性質----通俗數學名著譯叢 作者:英國)a科克肖特
19 東西數學物語 作者:(日)平山諦 著,代欽 譯 叢書名: 通俗數學名著譯叢
20 來自聖經的證明(第3版)(英文版) 作者:(德)艾格尼,(德)齊格勒 著
21 計算出人意料(從開普勒到托姆的時間圖景) 作者:伊法兒.埃克郎
22 愛麗絲漫遊數學奇境 作者:(日)釣 浩康 著,吳方 譯
23 費馬大定理 又名: Fermat's Last Theorem 作者: (英)西蒙?辛格 譯者: 薛密 副標題: 一個困惑了世間智者358年的謎
24 100個著名數學問題
25 數學中的智巧
26 可怕的科學《經典數學》系列 北京少年兒童出版社 尼克.阿諾德【英】等
傳記類:
1 《數字情種》(愛多士傳) 作者:保羅.霍夫曼
2 《我的大腦敞開了——天才數學家保羅·愛多士傳奇》 作者布魯斯.謝克特[美]
3 《女數學家傳奇》 作者:徐品方
4 《一個數學家的辯白》 作者: 哈代 譯者: 王希勇
5 《數學大師》 譯者: 徐源 作者: (美)E·T·貝爾 副標題: 從芝諾到龐加萊
6 現代數學家傳略辭典 作 者 張奠宙
7 世界著名數學家傳記(上、下集) 作 者 吳文俊
8 數學精英
9 最後的煉金術士——牛頓傳 作者 (英)懷特
專業:
1 《從微分觀點看拓撲》J.W.米爾諾
2 無窮小分析引論 Introction to analysis of the infinite [作者]:歐拉
3 《自然哲學之數學原理》 作者:艾薩克.牛頓
4 幾何原本(13卷視圖全本) 作者:(古希臘)歐幾里得原著, 燕曉東編譯
5 《數論報告》希爾伯特
6 《算術研究》高斯
7 《代數幾何原理》哈里斯(Harris)
8. 《微積分學教程》菲赫金哥爾茲
9. 《有限群表示》J.P.塞爾
10. 《曲線和曲面的微分幾何》杜卡謨
11. 《曲面論》達布
12. 《數論導引》華羅庚
13. 《代數學基礎》賈柯伯遜
14. 《交換代數》阿蒂亞
Ⅵ 有哪些數學著作
數學名著, 狹義上是指在數學上具有經典意義、被人們廣泛認可的優秀數學著作。廣義上也包括和數學有關的其他優秀著作,比如數學家傳記、數學演講報告、數學講義等等。
科普類
1 拓撲學奇趣,[蘇聯]伏.巴爾佳斯基,伏.葉弗來莫維契編著,裘光明譯
2 拓撲學的首要概念 作者:(美)陳錫駒(W.G.Chinn), (美)斯廷路德(N.E.Steenrod)著 一般附註:據1966年英文版譯
3 Famous Problems of Elementary Geometry 作 者(德)克萊因(F. Kiein) , 譯 者 沈一兵
4 奇妙而有趣的幾何 作 者 韋爾斯
5 幾何學的故事 作者:列昂納多·姆洛迪諾夫
6 近代歐氏幾何學 作者:(美)R·A·約翰遜著、單壿譯
7 《古今數學思想》, (美)莫里斯·克萊因著,張理京等譯 共4冊
8 《數學,確定性的喪失》 作者:(美)克萊因 著,李宏魁 譯
9 數學珍寶:歷史文獻精選 著 作 者: 李文林
10《幾何學的新探索》 作者:(英)考克瑟特(Doxeter,H.S.M.), (美)格雷策(Greitzer,S.L.)著
11 幾何的有名定理 作者:(日)矢野健太郎著
12 什麼是數學 作者:(美)R·柯,H·羅賓 著,I·斯圖爾特 修訂,左平,張飴慈 譯
13 《證明與反駁》 作者:伊姆雷.拉卡托斯
14 數學與猜想(共兩卷) G.波利亞,
15 《數學的發現》 作者:(美)喬治·波利亞 著, 劉景麟 等譯
16 《怎樣解題》 作者:(美)G·波利亞|譯者:塗泓//馮承天
17 數學——它的內容,方法和意義(共三卷) 原出版社 USSR Academy 作 者 [俄]A.D.亞歷山大洛夫 譯 者 孫小禮, 趙孟養 裘光明 嚴士健
18 圓錐曲線的幾何性質----通俗數學名著譯叢 作者:英國)a科克肖特
19 東西數學物語 作者:(日)平山諦 著,代欽 譯 叢書名: 通俗數學名著譯叢
20 來自聖經的證明(第3版)(英文版) 作者:(德)艾格尼,(德)齊格勒 著
21 計算出人意料(從開普勒到托姆的時間圖景) 作者:伊法兒.埃克郎
22 愛麗絲漫遊數學奇境 作者:(日)釣 浩康 著,吳方 譯
23 費馬大定理 又名: Fermat's Last Theorem 作者: (英)西蒙?辛格 譯者: 薛密 副標題: 一個困惑了世間智者358年的謎
24 100個著名數學問題
25 數學中的智巧
26 可怕的科學《經典數學》系列 北京少年兒童出版社 尼克.阿諾德【英】等
傳記類
1 《數字情種》(愛多士傳) 作者:保羅.霍夫曼
2 《我的大腦敞開了——天才數學家保羅·愛多士傳奇》 作者布魯斯.謝克特[美]
3 《女數學家傳奇》 作者:徐品方
4 《一個數學家的辯白》 作者: 哈代 譯者: 王希勇
5 《數學大師》 譯者: 徐源 作者: (美)E·T·貝爾 副標題: 從芝諾到龐加萊
6 現代數學家傳略辭典 作 者 張奠宙
7 世界著名數學家傳記(上、下集) 作 者 吳文俊
8 數學精英
9 最後的煉金術士——牛頓傳 作者 (英)懷特
專業類
1 《從微分觀點看拓撲》J.W.米爾諾
2 無窮小分析引論 Introction to analysis of the infinite [作者]:歐拉
3 《自然哲學之數學原理》 作者:艾薩克.牛頓
4 幾何原本(13卷視圖全本) 作者:(古希臘)歐幾里得原著, 燕曉東編譯
5 《數論報告》希爾伯特
6 《算術研究》高斯
7 《代數幾何原理》哈里斯(Harris)
8. 《微積分學教程》菲赫金哥爾茲
9. 《有限群表示》J.P.塞爾
10. 《曲線和曲面的微分幾何》杜卡謨
11. 《曲面論》達布
12. 《數論導引》華羅庚
13. 《代數學基礎》賈柯伯遜
14. 《交換代數》阿蒂亞
Ⅶ 最巨大的數學專著是什麼
公元前4世紀,古希臘數學家歐幾里得寫過一部《幾何原本》,共有13卷,它成為不朽的經典著作流傳至今。1939年,書架上突然出現了《數學原本》(第一卷)。好大的口氣!作者是誰?署名是從未聽說過的布爾巴基。這部書從那時起,到1973年,已出到第35卷,至今還沒有寫完。它是目前最巨大的數學專著。
布爾巴基是一個集體的筆名。本世紀20年代末,法國巴黎大學有幾名大學生,立志要把迄今為止的全部數學,用最新的觀點,重新加以整理。這幾個初出茅廬的青年人,准備用3年的時間,寫出一部《數學原本》,建立起自己的體系。這當然是過高的奢望,結果他們寫了40年,至今還沒有完成,但是布爾巴基學派卻在這一過程中形成了。他們在數學界獨樹一幟,把全部數學看作按不同結構進行演繹的體系,因而以結構主義的思想蜚聲國際,贏得了數學界的贊揚。布爾巴基學派甚至已經影響到中學教科書,我國近幾年翻譯的英、美、日本中學教材里,都有它的影子。
布爾巴基學派最初的成員有狄多涅和威爾等人,他們開始寫《數學原本》時只是20來歲的青年,現在已經70開外,成為國際著名的數學教授了。
《數學原本》是一部有嶄新體系的數學專著,而並非東拼西湊的數學網路全書,它以吸收最新數學成果並加以剖析而受到重視。近幾年,《數學原本》的前幾卷已重新修訂,每卷又補充了近三分之一的新材料。這部巨著是用法文寫的,現在已有英、俄、日等國文字的譯本。翻譯《數學原本》是一個巨大的工程,翻譯成日文時,還曾專門成立了一個委員會。
Ⅷ 著名的數學著作有哪些
1、《張丘建算經》:中國古代數學著作。(約公元5世紀)現傳本有92問,比較突出的成就有最大公約數與最小公倍數的計算,各種等差數列問題的解決、某些不定方程問題求解等。自張邱建以後,中國數學家對百雞問題的研究不斷深入,百雞問題也幾乎成了不定方程的代名詞,從宋代到清代圍繞百雞問題的數學研究取得了很好的成就。
2、《四元玉鑒》:《四元玉鑒》是元代傑出數學家朱世傑的代表作,其中的成果被視為中國籌算系統發展的頂峰。它是一部成就輝煌的數學名著,受到近代數學史研究者的高度評價,認為是中國數學著作中最重要的一部,同時也是中世紀最傑出的數學著作之一。
但其美中不足的是,在四元玉鑒中,對於一些重要的問題如求解高次聯立方程組的消去法等解說過於簡略,並且對於書中每一個問題的解法也沒有列出詳細的演算過程,故比較深奧,人們很難讀懂。以致於自朱世傑之後,中國這種在數學上高度發展的局面不但沒有保持發展下去,反而很多成就在明、清的一段時期內幾乎失傳。
3、《數書九章》:《數書九章》是對《九章算術》的繼承和發展,概括了宋元時期中國傳統數學的主要成就,標志著中國古代數學的高峰。當它還是抄本時就先後被收入《永樂大典》和《四庫全書》。1842年第一次印刷後即在中國民間廣泛流傳。
《數書九章》最初叫《數術大略》或《數學大略》(9卷),分為9類,每類為一卷。約到元代時更名為《數學九章》,內容也由9卷改為18卷。明初抄本被收入《永樂大典》(1408),另抄本藏於文淵閣。明代學者王應遴傳抄時定名為《數書九章》,明末學者趙琦美再抄時沿用此名。抄本形式流傳到清代,1781年由李銳校訂後收入《四庫全書》。
4、《九章算術》:《九章算術》確定了中國古代數學的框架,以計算為中心的特點,密切聯系實際,以解決人們生產、生活中的數學問題為目的的風格。
該書內容十分豐富,全書總結了戰國、秦、漢時期的數學成就。同時,《九章算術》在數學上還有其獨到的成就,不僅最早提到分數問題,也首先記錄了盈不足等問題,《方程》章還在世界數學史上首次闡述了負數及其加減運演算法則。它是一本綜合性的歷史著作,是當時世界上最簡練有效的應用數學,它的出現標志中國古代數學形成了完整的體系。
5、《孫子算經》:《孫子算經》是中國古代重要的數學著作。成書大約在四、五世紀,也就是大約一千五百年前,作者生平和編寫年不詳。傳本的《孫子算經》共三卷。
卷上敘述算籌記數的縱橫相間制度和籌算乘除法,卷中舉例說明籌算分數演算法和籌算開平方法。卷下第31題,可謂是後世「雞兔同籠」題的始祖,後來傳到日本,變成「鶴龜算」。
Ⅸ 中國第一部數學著作是什麼
《九章算術》。
《九章算術》是中國古代第一部數學專著,是《算經十書》中最重要的一部,成於公元一世紀左右。其作者已不可考。一般認為它是經歷代各家的增補修訂,而逐漸成為現今定本的,西漢的張蒼、耿壽昌曾經做過增補和整理,其時大體已成定本。
最後成書最遲在東漢前期,現今流傳的大多是在三國時期魏元帝景元四年(263年),劉徽為《九章》所作的注本。
(9)數學專著擴展閱讀
《九章算術》共收有246個數學問題,分為九章。它們的主要內容分別是:
第一章「方田」: 主要講述了平面幾何圖形面積的計算方法。包括長方形、等腰三角形、直角梯形、等腰梯形、圓形、扇形、弓形、圓環這八種圖形面積的計算方法。另外還系統地講述了分數的四則運演算法則,以及求分子分母最大公約數等方法。
第二章「粟米」:穀物糧食的按比例折換;提出比例演算法,稱為今有術;衰分章提出比例分配法則,稱為衰分術;
第三章「衰分」:比例分配問題。
第四章「少廣」:已知面積、體積,反求其一邊長和徑長等;介紹了開平方、開立方的方法。
第五章「商功」:土石工程、體積計算;除給出了各種立體體積公式外,還有工程分配方法;
第六章「均輸」:合理攤派賦稅;用衰分術解決賦役的合理負擔問題。今有術、衰分術及其應用方法,構成了包括今天正、反比例、比例分配、復比例、連鎖比例在內的整套比例理論。西方直到15世紀末以後才形成類似的全套方法。
第七章「盈不足」:即雙設法問題;提出了盈不足、盈適足和不足適足、兩盈和兩不足三種類型的盈虧問題,以及若干可以通過兩次假設化為盈不足問題的一般問題的解法。這也是處於世界領先地位的成果,傳到西方後,影響極大。
第八章「方程」:一次方程組問題;採用分離系數的方法表示線性方程組,相當於現在的矩陣;解線性方程組時使用的直除法,與矩陣的初等變換一致。
第九章「勾股」:利用勾股定理求解的各種問題。其中的絕大多數內容是與當時的社會生活密切相關的。